This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379036 #23 Dec 31 2024 06:35:55 %S A379036 1,5,11,16,19,20,21,24,25,29,36,44,45,47,50,52,53,56,58,62,69,71,76, %T A379036 83,86,87,88,89,93,94,95,100,101,103,104,107,108,114,116,117,121,124, %U A379036 125,129,130,131,132,136,137,139,143,144,150,152,157,160,165,166,167 %N A379036 Indices of zeros in binary concatenation of primes. %C A379036 The initial bit is labeled as bit 0. %e A379036 The primes, their binary expansions, and positions of successive zero bits, begin %e A379036 prime 2 3 5 7 11 ... %e A379036 binary 10 11 101 111 1011 ... %e A379036 zeros ^ ^ ^ %e A379036 a(n) = 1 5 11 ... %t A379036 seq[lim_] := -1 + Position[Flatten@ IntegerDigits[Prime[Range[lim]], 2], 0] // Flatten; seq[30] (* _Amiram Eldar_, Dec 31 2024 *) %o A379036 (Python) %o A379036 import sympy %o A379036 l = [] %o A379036 bin_primes = "" %o A379036 for i in range(1,27): %o A379036 bin_primes += bin(sympy.prime(i))[2:] %o A379036 for i in range(len(bin_primes)): %o A379036 if bin_primes[i] == '0': %o A379036 l.append(i) %o A379036 print(l) %Y A379036 Cf. A003607, A191232. %K A379036 nonn,base %O A379036 1,2 %A A379036 _Alexandre Herrera_, Dec 14 2024