cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379036 Indices of zeros in binary concatenation of primes.

This page as a plain text file.
%I A379036 #23 Dec 31 2024 06:35:55
%S A379036 1,5,11,16,19,20,21,24,25,29,36,44,45,47,50,52,53,56,58,62,69,71,76,
%T A379036 83,86,87,88,89,93,94,95,100,101,103,104,107,108,114,116,117,121,124,
%U A379036 125,129,130,131,132,136,137,139,143,144,150,152,157,160,165,166,167
%N A379036 Indices of zeros in binary concatenation of primes.
%C A379036 The initial bit is labeled as bit 0.
%e A379036 The primes, their binary expansions, and positions of successive zero bits, begin
%e A379036    prime    2  3   5   7   11 ...
%e A379036    binary  10 11 101 111 1011 ...
%e A379036    zeros    ^     ^       ^
%e A379036    a(n) =   1     5      11   ...
%t A379036 seq[lim_] := -1 + Position[Flatten@ IntegerDigits[Prime[Range[lim]], 2], 0] // Flatten; seq[30] (* _Amiram Eldar_, Dec 31 2024 *)
%o A379036 (Python)
%o A379036 import sympy
%o A379036 l = []
%o A379036 bin_primes = ""
%o A379036 for i in range(1,27):
%o A379036     bin_primes += bin(sympy.prime(i))[2:]
%o A379036 for i in range(len(bin_primes)):
%o A379036     if bin_primes[i] == '0':
%o A379036         l.append(i)
%o A379036 print(l)
%Y A379036 Cf. A003607, A191232.
%K A379036 nonn,base
%O A379036 1,2
%A A379036 _Alexandre Herrera_, Dec 14 2024