A379047 Rectangular array read by descending antidiagonals: the Type 2 runlength index array of A000002 (the Kolakoski sequence); see Comments.
1, 3, 2, 5, 4, 8, 6, 11, 28, 13, 7, 16, 35, 80, 53, 9, 18, 48, 121, 217, 112, 10, 22, 62, 135, 449, 332, 305, 12, 26, 67, 175, 472, 1478, 1451, 296, 14, 31, 89, 203, 513, 1974, 1947, 1358, 1331, 15, 38, 94, 244, 812, 2101, 2683, 1920, 1827, 964, 17, 40, 107
Offset: 1
Examples
Corner: 1 3 5 6 7 9 10 12 14 15 17 19 2 4 11 16 18 22 26 31 38 40 44 51 8 28 35 48 62 67 89 94 107 130 150 157 13 80 121 135 175 203 244 359 417 458 499 540 53 217 449 472 513 812 879 1069 1272 1511 1725 1786 112 332 1478 1974 2101 2423 2710 3282 3638 3715 3950 4145 305 1451 1947 2683 2883 3605 3706 3827 4528 4749 4963 5076 296 1358 1920 2590 2850 3542 5745 6400 7103 7567 7796 8346 1331 1827 2491 2805 3437 5652 6373 7769 8265 9315 11508 11738 Using s = A000002 as an example, we have for V*(s): (row 1) = ((1,1), (3,2), (5,1), (6,2), (7,1), (9,2), (10,1), (12,2), (14,1),...) c(1) = ((2,2), (4,1), (8,2), (11,2), (13,1), (16,1), (18,2), (22,1), (26,2), ...) (row 2) = ((2,2), (4,1), (11,2), (16,1), (18,2), (22,1), (26,2), (31,1), (35,2), ...) c(2) = (8,2), (13,1), (28,1), ...) (row 3) = (8,2), (28,1), so that VI(s) has (row 1) = (1,3,5,6,7,9,10,12, ...) (row 2) = (2,4,11,16,18,22,26, ...) (row 3) = (8,28,35,48,62,67,...)
Programs
-
Mathematica
r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 1 *) row[0] = Prepend[Nest[Flatten[Partition[#, 2] /. {{2, 2} -> {2, 2, 1, 1}, {2, 1} -> {2, 2, 1}, {1, 2} -> {2, 1, 1}, {1, 1} -> {2, 1}}] &, {2, 2}, 24], 1]; (* A000002 *) row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]]; k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[ SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]]; m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]]; p[n_] := Take[m[[n]], 12] t = Table[p[n], {n, 1, 12}] Grid[t] (* array *) w[n_, k_] := t[[n]][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *) (* Peter J. C. Moses, Dec 04 2024 *)
Comments