This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379097 #13 Dec 20 2024 12:44:34 %S A379097 60,84,120,132,156,168,204,228,240,264,276,280,300,312,315,336,348, %T A379097 372,408,420,440,444,456,480,492,495,516,520,528,552,560,564,585,588, %U A379097 600,616,624,630,636,660,672,680,693,696,708,728,732,744,760,765,780,804,816 %N A379097 Numbers that are not waterproof. %C A379097 Zero and one are waterproof numbers by convention. Numbers that admit a prime factorization are not waterproof if their water capacity is > 0. (The water capacity of a number is defined in A275339.) %C A379097 Proper subset of A375055, in turn a proper subset of A126706, since A001221(a(n)) >= 3 and a maximum multiplicity is required for at least one prime power factor, so as to have positive water capacity. - _Michael De Vlieger_, Dec 18 2024 %H A379097 Michael De Vlieger, <a href="/A379097/b379097.txt">Table of n, a(n) for n = 1..10000</a> %p A379097 # The function 'water_capacity' is defined in A275339. %p A379097 is_not_waterproof := n -> ifelse(n < 2, false, is(water_capacity(n) <> 0)): %p A379097 select(is_not_waterproof, [seq(0..820)]); %t A379097 nn = 816; %t A379097 s = Select[Range[nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &]; %t A379097 Select[s, Function[f, And[NoneTrue[{Sort[f], ReverseSort[f]}, # == f &], %t A379097 Total[(f //. {a___, b_, c__, d_, e___} /; %t A379097 AllTrue[{c}, And[# < b, # < d] &] :> %t A379097 {a, b, Sequence @@ Table[Min[b, d], {Length[{c}]}], d, e}) - f] > 0] ] %t A379097 [Power @@@ FactorInteger[#]] &] (* _Michael De Vlieger_, Dec 18 2024, after _Jean-François Alcover_ at A275339 *) %o A379097 (Python) %o A379097 # The function 'WaterCapacity' is defined in A275339. %o A379097 print([n for n in range(818) if WaterCapacity(n) > 0]) %Y A379097 Cf. A275339, A379094, A379096, A379098. %K A379097 nonn %O A379097 1,1 %A A379097 _Peter Luschny_, Dec 16 2024