cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379101 Decimal expansion of log(2)/4.

This page as a plain text file.
%I A379101 #13 Aug 19 2025 04:46:11
%S A379101 1,7,3,2,8,6,7,9,5,1,3,9,9,8,6,3,2,7,3,5,4,3,0,8,0,3,0,3,6,4,5,4,4,1,
%T A379101 4,2,0,1,8,8,7,5,0,3,3,5,9,0,0,6,3,8,1,3,5,3,0,1,7,0,0,0,2,3,7,3,3,4,
%U A379101 8,4,0,5,4,9,2,4,2,3,6,7,8,9,0,1,4,6,5,8,3,1,7,4,9,1,0,4,6,7,1,8
%N A379101 Decimal expansion of log(2)/4.
%D A379101 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.24.2, p. 414.
%F A379101 Equals log(A010767) = A016655/20. - _Hugo Pfoertner_, Dec 15 2024
%F A379101 From _Amiram Eldar_, Aug 19 2025: (Start)
%F A379101 Equals -Sum_{k>=0} zeta(2*k)/(2^(2*k+1)*(2*k+1)).
%F A379101 Equals Sum_{k>=0} 1/((4*k + 1)*(4*k + 2)*(4*k + 3)) = Sum_{k>=0} 1/A001505(k). (End)
%e A379101 0.17328679513998632735430803036454414201887503359006...
%t A379101 RealDigits[Log[2]/4, 10, 100][[1]]
%o A379101 (PARI) log(2)/4 \\ _Amiram Eldar_, Aug 19 2025
%Y A379101 Cf. A001505, A002162, A010767, A016655.
%K A379101 nonn,cons
%O A379101 0,2
%A A379101 _Stefano Spezia_, Dec 15 2024