This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379123 #18 Dec 20 2024 12:35:20 %S A379123 9,121,9,9,81,1521,9,9,49,49,81,9,9,625,49,49,9,961,9,9,9,961,961,49, %T A379123 9,961,961,169,961,961,16129,49,49,961,961,961,961,961,49,9,9,9,9,625, %U A379123 961,16129,16129,961,961,961,49,9,49,16129,961,49,961,9,49,49,49,49,9,9,9,9,49,9,16129,9,9,49,49,9,49,9 %N A379123 a(n) = A379113(A379121(n)), where A379121 gives those odd squares k for which A379113(k) > 1. %C A379123 All terms are odd squares (A016754) by definition. %C A379123 Among the initial 2025 terms, only the following 12 terms occur: %C A379123 Term Occurs Where %C A379123 n times %C A379123 --------------------------------------------------------------- %C A379123 9 699 %C A379123 49 665 %C A379123 81 2 a(5) and a(11) %C A379123 121 1 a(2) %C A379123 169 2 a(28) and a(926) %C A379123 625 9 at n=14, 44, 85, 110, 155, 447, 654, 896, 1217. %C A379123 961 390 %C A379123 1521 1 a(6) NB: 1521 = 9*169. %C A379123 8649 1 a(1087). NB: 8649 = 9*961. %C A379123 16129 246 %C A379123 67092481 8 First occurrence at a(1120) %C A379123 3287531569 1 a(1636). NB: 3287531569 = 49*67092481. %C A379123 Questions: Is this sequence infinite? Do all terms of A133049 eventually appear here? Or any 4th or higher powers of Mersenne and other primes, apart from 81 and 625? %H A379123 Antti Karttunen, <a href="/A379123/b379123.txt">Table of n, a(n) for n = 1..2025</a> %H A379123 <a href="/index/Con#CongruCrossDomain">Index entries for sequences defined by congruent products between domains N and GF(2)[X]</a>. %H A379123 <a href="/index/Ge#GF2X">Index entries for sequences related to polynomials in ring GF(2)[X]</a>. %H A379123 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>. %F A379123 a(n) = A379121(n) / A379124(n). %e A379123 See examples in A379121. %o A379123 (PARI) forstep(n=1,2^18,2,d=A379113(n^2); if(d>1, print1(d,", "))); %Y A379123 Cf. A016754, A114390, A133049, A379113, A379121, A379124, A379125. %K A379123 nonn %O A379123 1,1 %A A379123 _Antti Karttunen_, Dec 18 2024