A379133 Decimal expansion of the volume of a pentakis dodecahedron with unit shorter edge length.
1, 3, 4, 5, 8, 5, 6, 9, 3, 6, 6, 3, 1, 8, 7, 1, 4, 2, 2, 3, 6, 4, 2, 9, 6, 4, 1, 2, 7, 5, 3, 9, 1, 5, 3, 5, 9, 5, 2, 7, 9, 9, 2, 4, 8, 5, 9, 7, 6, 2, 2, 4, 2, 0, 9, 8, 1, 6, 2, 8, 3, 7, 6, 5, 7, 6, 7, 5, 4, 1, 9, 8, 8, 0, 6, 8, 6, 8, 2, 2, 5, 6, 7, 4, 1, 1, 1, 6, 1, 1
Offset: 2
Examples
13.458569366318714223642964127539153595279924859762...
Links
- Paolo Xausa, Table of n, a(n) for n = 2..10000
- Eric Weisstein's World of Mathematics, Pentakis Dodecahedron.
- Wikipedia, Pentakis dodecahedron.
- Index entries for algebraic numbers, degree 2.
Crossrefs
Programs
-
Mathematica
First[RealDigits[5/36*(41 + 25*Sqrt[5]), 10, 100]] (* or *) First[RealDigits[PolyhedronData["PentakisDodecahedron", "Volume"], 10, 100]]
-
PARI
(41 + 25*sqrt(5))*5/36 \\ Charles R Greathouse IV, Feb 05 2025
Formula
Equals (5/36)*(41 + 25*sqrt(5)) = (5/36)*(41 + 25*A002163).
Comments