This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379134 #9 Feb 05 2025 10:28:29 %S A379134 1,4,4,5,3,3,1,9,2,5,6,5,2,2,1,4,8,2,8,3,1,5,8,5,1,2,4,9,1,0,2,0,8,1, %T A379134 1,9,7,7,2,3,8,7,1,1,7,7,8,4,3,0,3,8,9,7,1,6,2,5,7,9,0,6,7,3,8,1,7,3, %U A379134 5,4,5,5,1,5,9,4,0,1,5,6,3,8,4,2,8,0,6,3,3,2 %N A379134 Decimal expansion of the inradius of a pentakis dodecahedron with unit shorter edge length. %C A379134 The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron. %H A379134 Paolo Xausa, <a href="/A379134/b379134.txt">Table of n, a(n) for n = 1..10000</a> %H A379134 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentakisDodecahedron.html">Pentakis Dodecahedron</a>. %H A379134 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentakis_dodecahedron">Pentakis dodecahedron</a>. %H A379134 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>. %F A379134 Equals sqrt(477/436 + 97*sqrt(5)/218) = sqrt(477/436 + 97*A002163/218). %F A379134 Equals the largest root of 1744*x^4 - 3816*x^2 + 361. %e A379134 1.4453319256522148283158512491020811977238711778430... %t A379134 First[RealDigits[Sqrt[477/436 + 97*Sqrt[5]/218], 10, 100]] (* or *) %t A379134 First[RealDigits[PolyhedronData["PentakisDodecahedron", "Inradius"], 10, 100]] %o A379134 (PARI) sqrt(477/436 + 97*sqrt(5)/218) \\ _Charles R Greathouse IV_, Feb 05 2025 %Y A379134 Cf. A379132 (surface area), A379133 (volume), A379135 (midradius), A379136 (dihedral angle). %Y A379134 Cf. A002163. %K A379134 nonn,cons,easy %O A379134 1,2 %A A379134 _Paolo Xausa_, Dec 17 2024