A379147 Irregular triangle T(n, k), n >= 0, k = 1..2^A007895(n), read by rows; the n-th row lists the integers m such that A184617(abs(m)) = A003714(n).
0, -1, 1, -2, 2, -4, 4, -5, -3, 3, 5, -8, 8, -9, -7, 7, 9, -10, -6, 6, 10, -16, 16, -17, -15, 15, 17, -18, -14, 14, 18, -20, -12, 12, 20, -21, -19, -13, -11, 11, 13, 19, 21, -32, 32, -33, -31, 31, 33, -34, -30, 30, 34, -36, -28, 28, 36
Offset: 0
Examples
Triangle T(n, k) begins: n n-th row -- ---------------------------------- 0 0 1 -1, 1 2 -2, 2 3 -4, 4 4 -5, -3, 3, 5 5 -8, 8 6 -9, -7, 7, 9 7 -10, -6, 6, 10 8 -16, 16 9 -17, -15, 15, 17 10 -18, -14, 14, 18 11 -20, -12, 12, 20 12 -21, -19, -13, -11, 11, 13, 19, 21 13 -32, 32 14 -33, -31, 31, 33 15 -34, -30, 30, 34
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10922 (rows for n = 0..609 flattened)
- Index entries for sequences related to Zeckendorf expansion of n
Programs
-
PARI
tozeck(n) = { for (i=0, oo, if (n<=fibonacci(2+i), my (v=0, f); forstep (j=i, 0, -1, if (n>=f=fibonacci(2+j), n-=f; v+=2^j;); if (n==0, return (v););););); } row(n) = { my (z = tozeck(n), r = [0], b); while (z, z -= b = 2^valuation(z, 2); r = concat([v - b | v <- r], [v + b | v <- r]);); return (r); }
Comments