This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379149 #25 Dec 22 2024 10:36:16 %S A379149 1,1,1,1,2,1,1,4,5,2,1,6,13,12,4,1,10,37,64,52,16,1,12,57,138,180,120, %T A379149 32,1,18,129,480,1008,1200,752,192,1,22,201,996,2928,5232,5552,3200, %U A379149 768,1,28,333,2202,8904,22800,36944,36512,19968,4608,1,32,445,3534,17712,58416,128144,184288,166016,84480,18432 %N A379149 Specialization of the Elementary Symmetric Functions e(n) at x_i -> Euler phi(i). %C A379149 Triangular table with alternating signed sum equal to 0 for n>0, %C A379149 1 %C A379149 1,-1 %C A379149 1,-2,1 %C A379149 1,-4,5,-2 %C A379149 1,-6,13,-12,4 %C A379149 .. %C A379149 and with alternating signed weighted sum (first moment) also equal to 0 for n>1, %C A379149 0 %C A379149 0,-1 %C A379149 0,-2,2 %C A379149 0,-4,10,-6 %C A379149 0,-6,26,-36,16 %C A379149 .. %C A379149 also when shifting the weights to start at 1, %C A379149 1 %C A379149 1,-2 %C A379149 1,-4,3 %C A379149 1,-8,15,-8 %C A379149 1,-12,39,-48,20 %H A379149 Alois P. Heinz, <a href="/A379149/b379149.txt">Rows n = 0..140, flattened</a> %H A379149 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/801399">Specializations of elementary symmetric polynomials</a> %F A379149 T(n,k) = [x^k] Product_{j=1..n} (1 + x*phi(j)). - _Andrew Howroyd_, Dec 16 2024 %e A379149 Triangle begins: %e A379149 1; %e A379149 1, 1; %e A379149 1, 2, 1; %e A379149 1, 4, 5, 2; %e A379149 1, 6, 13, 12, 4; %e A379149 1, 10, 37, 64, 52, 16; %e A379149 1, 12, 57, 138, 180, 120, 32; %e A379149 ... %p A379149 b:= proc(n) option remember; `if`(n=0, 1, %p A379149 b(n-1)*(1+x*numtheory[phi](n))) %p A379149 end: %p A379149 T:= (n, k)-> coeff(b(n), x, k): %p A379149 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Dec 16 2024 %t A379149 Table[CoefficientList[Expand@Product[z EulerPhi[k]+1,{k,0,n}],z,n+1],{n,0,10}] %o A379149 (PARI) row(n) = Vecrev(prod(k=1, n, 1 + 'x * eulerphi(k))) \\ _Andrew Howroyd_, Dec 16 2024 %Y A379149 Columns k=0-1 give: A000012, A002088. %Y A379149 Main diagonal gives A001088. %Y A379149 T(n,n-1) gives A067578. %Y A379149 Cf. A000010. %K A379149 nonn,tabl %O A379149 0,5 %A A379149 _Wouter Meeussen_, Dec 16 2024