This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379150 #25 Dec 27 2024 13:04:27 %S A379150 103,2003,70003,100003,1000003,20000003,500000003,40000000003, %T A379150 40000000003,100000000003,2000000000003,230000000000003, %U A379150 3100000000000003,11000000000000003,20000000000000003,100000000000000003,1000000000000000003,310000000000000000003,500000000000000000003 %N A379150 Smallest prime ending in "3", with n preceding "0" digits. %C A379150 Leading zeros are not allowed, e.g., "03". %C A379150 a(997) has 1001 digits. - _Michael S. Branicky_, Dec 16 2024 %H A379150 Michael S. Branicky, <a href="/A379150/b379150.txt">Table of n, a(n) for n = 1..996</a> %e A379150 a(1) = 103, is the smallest prime ending in "03"; %e A379150 a(2) = 2003, is the smallest prime ending in "003". %t A379150 Table[i=1;While[!PrimeQ[m=FromDigits[Join[IntegerDigits[i],Table[0,n],{3}]]],i++];m,{n,19}] (* _James C. McMahon_, Dec 23 2024 *) %o A379150 (Python) %o A379150 import sympy %o A379150 def prime3_finder(): %o A379150 outVec = [] %o A379150 power = 2 %o A379150 for n in range(100,999999999): %o A379150 if not n & 3 == 3: continue # speed-up over simple MOD operation %o A379150 if not n % 10**power == 3: continue %o A379150 if not sympy.isprime(n): continue %o A379150 outVec.append(n) %o A379150 power += 1 %o A379150 return outVec %o A379150 outvec = prime3_finder() %o A379150 print(outvec) %o A379150 (Python) %o A379150 from sympy import isprime %o A379150 from itertools import count %o A379150 def a(n): return next(i for i in count(10**(n+1)+3, 10**(n+1)) if isprime(i)) %o A379150 print([a(n) for n in range(1, 20)]) # _Michael S. Branicky_, Dec 16 2024 %o A379150 (PARI) a(n)=for(i=1, oo, if(isprime(i*10^(n+1)+3), return(i*10^(n+1)+3))) \\ _Johann Peters_, Dec 27 2024 %Y A379150 Cf. A070854, A070847. %K A379150 nonn,base %O A379150 1,1 %A A379150 _James S. DeArmon_, Dec 16 2024 %E A379150 More terms from _Michael S. Branicky_, Dec 16 2024