A379153 The binary weights of the Apéry numbers (A005259).
1, 2, 3, 6, 6, 14, 15, 15, 20, 19, 23, 23, 27, 34, 35, 44, 40, 36, 40, 44, 41, 48, 52, 62, 64, 66, 57, 66, 72, 79, 71, 75, 77, 78, 79, 78, 88, 86, 92, 100, 103, 103, 92, 116, 96, 116, 117, 113, 129, 117, 123, 128, 123, 126, 130, 133, 129, 142, 147, 134, 135, 148
Offset: 0
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- Arnold Knopfmacher and Florian Luca, Digit sums of binomial sums, Journal of Number Theory, Vol. 132, No. 2 (2012), pp. 324-331.
- Florian Luca and Igor E. Shparlinski, On the g-ary expansions of Apéry, Motzkin, Schröder and other combinatorial numbers, Annals of Combinatorics, Vol. 14 (2010), pp. 507-524.
Programs
-
Mathematica
a[n_] := DigitCount[Sum[(Binomial[n, k] * Binomial[n+k, k])^2, {k, 0, n}], 2, 1]; Array[a, 100, 0]
-
PARI
a(n) = hammingweight(sum(k=0, n, (binomial(n, k)*binomial(n+k, k))^2));
Formula
a(n) > c * (log(n)/log(log(n)))^(1/4) holds on a set of n of asymptotic density 1, where c > 0 is a constant (Luca and Shparlinski, 2010).
a(n) > c * log(n)/log(log(n)) holds on a set of n of asymptotic density 1, where c > 0 is a constant (Knopfmacher and Luca, 2012).
Conjecture: Limit_{m->oo} (1/m^2) * Sum_{k=1..m} a(k) = log(sqrt(2) + 1)/log(2) = 1.2715533... (Knopfmacher and Luca, 2012).