This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379155 #14 Jan 23 2025 00:22:28 %S A379155 2,3,5,7,9,10,13,15,17,18,22,23,26,27,31,32,40,42,43,44,52,53,67,68, %T A379155 69,70,77,78,85,86,90,91,116,117,119,120,135,136,151,152,169,170,186, %U A379155 187,197,198,243,244,246,247,291,292,312,313,339,340,358,360,362 %N A379155 Numbers k such that there is a unique prime between the k-th and (k+1)-th prime powers (A246655). %C A379155 Numbers k such that exactly one of A246655(k) and A246655(k+1) is prime. - _Robert Israel_, Jan 22 2025 %C A379155 The prime powers themselves are: 3, 4, 7, 9, 13, 16, 23, 27, 31, 32, 47, 49, 61, 64, ... %H A379155 Robert Israel, <a href="/A379155/b379155.txt">Table of n, a(n) for n = 1..2112</a> %F A379155 A246655(a(n)) = A379157(n). %e A379155 The 4th and 5th prime powers are 5 and 7, with interval (5,6,7) containing two primes, so 4 is not in the sequence. %e A379155 The 13th and 14th prime powers are 23 and 25, with interval (23,24,25) containing only one prime, so 13 is in the sequence. %e A379155 The 18th and 19th prime powers are 32 and 37, with interval (32,33,34,35,36,37) containing just one prime 37, so 18 is in the sequence. %p A379155 N:= 1000: # for terms k where A246655(k+1) <+ N %p A379155 P:= select(isprime,[2,seq(i,i=3..N,2)]): %p A379155 S:= convert(P,set): %p A379155 for p in P while p^2 <= N do %p A379155 S:= S union {seq(p^j,j=2..ilog[p](N))} %p A379155 od: %p A379155 PP:= sort(convert(S,list)): %p A379155 state:= 1: Res:= NULL: %p A379155 ip:= 2: %p A379155 for i from 2 to nops(PP) do %p A379155 if PP[i] = P[ip] then %p A379155 if state = 0 then Res:= Res,i-1 fi; %p A379155 state:= 1; %p A379155 ip:= ip+1; %p A379155 else %p A379155 if state = 1 then Res:= Res,i-1 fi; %p A379155 state:= 0; %p A379155 fi %p A379155 od: %p A379155 Res; # _Robert Israel_, Jan 22 2025 %t A379155 v=Select[Range[100],PrimePowerQ]; %t A379155 Select[Range[Length[v]-1],Length[Select[Range[v[[#]],v[[#+1]]],PrimeQ]]==1&] %Y A379155 These are the positions of 1 in A366835, for perfect powers A080769. %Y A379155 For perfect powers instead of prime powers we have A378368. %Y A379155 For no primes we have A379156, for perfect powers A274605. %Y A379155 The prime powers themselves are A379157, for previous A175106. %Y A379155 A000015 gives the least prime power >= n. %Y A379155 A000040 lists the primes, differences A001223. %Y A379155 A000961 lists the powers of primes, differences A057820. %Y A379155 A031218 gives the greatest prime power <= n. %Y A379155 A065514 gives the greatest prime power < prime(n), difference A377289. %Y A379155 A246655 lists the prime powers. %Y A379155 A366833 counts prime powers between primes, see A053607, A304521. %Y A379155 Cf. A025474, A067871, A068315, A080101, A178700, A345531, A377281, A377283, A377287, A377434, A378374. %K A379155 nonn %O A379155 1,1 %A A379155 _Gus Wiseman_, Dec 22 2024