A379532 Ulam numbers that are products of exactly four distinct primes (or tetraprimes).
390, 546, 690, 798, 1155, 1230, 1770, 2010, 2090, 2418, 2618, 2814, 3090, 3290, 3390, 3930, 4326, 4370, 4470, 4578, 4602, 4641, 6110, 6870, 7170, 7490, 7735, 7930, 8294, 9834, 10110, 10545, 10738, 11102, 11346, 11390, 11454, 11622, 11715, 11886, 12270, 12441, 12470, 12570
Offset: 1
Keywords
Examples
390 is a term because 390=2*3*5*13 is the product of 4 distinct primes and 390 is an Ulam number. 546 is a term because 546=2*3*7*13 is the product of 4 distinct primes and 546 is an Ulam number. 1155 is a term because 1155=3*5*7*11 is the product of 4 distinct primes and 1155 is an Ulam number.
Links
- Robert Israel, Table of n, a(n) for n = 1..6826
Programs
-
Maple
N:= 20000: # for terms <= N U:= [1,2]: V:= Vector(N): V[3]:= 1: R:= NULL: count:= 0: for i from 3 do for k from U[-1]+1 to N do if V[k] = 1 then J:= select(`<=`,U +~ k, N); V[J]:= V[J] +~ 1; U:= [op(U),k]; F:= ifactors(k)[2]: if F[..,2] = [1,1,1,1] then R:= R,k; count:= count+1; fi; break fi od; if k > N then break fi; od: R; # Robert Israel, Dec 25 2024
-
Mathematica
seq[numUlams_] := Module[{ulams = {1, 2}}, Do[AppendTo[ulams, n = Last[ulams]; While[n++; Length[DeleteCases[Intersection[ulams, n - ulams], n/2, 1, 1]] != 2]; n], {numUlams}]; Select[ulams, FactorInteger[#][[;; , 2]] == {1, 1, 1, 1} &]]; seq[1200] (* Amiram Eldar, Dec 24 2024, after Jean-François Alcover at A002858 *)
Comments