A379175 Irregular triangle T(n, k), n >= 0, k = 1..ceiling(2^(A007895(n)-1)); the n-th row lists the nonnegative integers m such that A184617(m) = A003714(n).
0, 1, 2, 4, 3, 5, 8, 7, 9, 6, 10, 16, 15, 17, 14, 18, 12, 20, 11, 13, 19, 21, 32, 31, 33, 30, 34, 28, 36, 27, 29, 35, 37, 24, 40, 23, 25, 39, 41, 22, 26, 38, 42, 64, 63, 65, 62, 66, 60, 68, 59, 61, 67, 69, 56, 72, 55, 57, 71, 73, 54, 58, 70, 74, 48, 80, 47, 49, 79, 81
Offset: 0
Examples
Triangle T(n, k) begins: n n-th row -- -------------- 0 0 1 1 2 2 3 4 4 3, 5 5 8 6 7, 9 7 6, 10 8 16 9 15, 17 10 14, 18 11 12, 20 12 11, 13, 19, 21 13 32 14 31, 33 15 30, 34
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10922 (rows for n = 0..986 flattened)
- Index entries for sequences related to Zeckendorf expansion of n
- Index entries for sequences that are permutations of the natural numbers
Programs
-
PARI
tozeck(n) = { for (i=0, oo, if (n<=fibonacci(2+i), my (v=0, f); forstep (j=i, 0, -1, if (n>=f=fibonacci(2+j), n-=f; v+=2^j;); if (n==0, return (v););););); } row(n) = { my (z = tozeck(n), r = [0], b); while (z, z -= b = 2^valuation(z, 2); r = concat([v - b | v <- r], [v + b | v <- r]);); return (select(v -> v >= 0, r)); }
Comments