This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379182 #11 Dec 18 2024 19:20:11 %S A379182 0,1,21,58,149,566,1676,5482,18021,59665,199700,670517,2259384, %T A379182 7624878,25759564,87078065,294452965,995889190,3368616437,11395096538, %U A379182 38547768152,130403228310,441145535869,1492374662977,5048648849760,17079422831941,57779211419220,195465558240778 %N A379182 Number of minimal edge covers in the n-double cone graph. %C A379182 The sequence has been extended to n=0 using the recurrence. - _Andrew Howroyd_, Dec 18 2024 %H A379182 Andrew Howroyd, <a href="/A379182/b379182.txt">Table of n, a(n) for n = 0..200</a> %H A379182 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DoubleConeGraph.html">Double Cone Graph</a>. %H A379182 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalEdgeCover.html">Minimal Edge Cover</a>. %H A379182 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (4,0,-2,-21,8,8,34,-12,20,-28,6,-24,20,-13,12,-4,2,-1). %F A379182 G.f.: x*(1 + 17*x - 26*x^2 - 81*x^3 + 33*x^4 - 39*x^5 + 118*x^6 - 312*x^7 + 461*x^8 - 260*x^9 + 183*x^10 - 211*x^11 + 33*x^12 + 10*x^13 + 3*x^14 - 2*x^16)/((1 + x + x^2 - x^3)*(1 + x - x^3)^2*(1 - 2*x + x^2 - x^3)^2*(1 - 3*x - x^2 - x^3)). - _Andrew Howroyd_, Dec 18 2024 %o A379182 (PARI) seq(n)={my(g1 = 1/(1-x -x^2 - x^3) + O(x*x^n), g2 = 1/(1-x^2-x^3) + O(x*x^n), h1 = g1 + x^2*g1 + 2*x^3*g1, h2 = g2 + x^2*g2 + 2*x^3*g2); Vec(serconvol(h1,h1) - serconvol(h2,h2) + 2*serconvol(h2, x*deriv(2*x^2*g2 + x^3*g2)), -n-1)} \\ _Andrew Howroyd_, Dec 18 2024 %Y A379182 Cf. A364741, A372976. %K A379182 nonn,easy %O A379182 0,3 %A A379182 _Eric W. Weisstein_, Dec 17 2024 %E A379182 a(0)-a(2) prepended and a(8) onwards from _Andrew Howroyd_, Dec 18 2024