This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379205 #7 Dec 20 2024 23:39:04 %S A379205 1,7,74,998,15268,251427,4345869,77751128,1427455842,26740178711, %T A379205 509068777424,9820550568868,191554931918517,3771529984556599, %U A379205 74857068226445132,1496158969938529383,30086862802675119068,608303992207446069349,12358069554479794052292,252144178158939689795128 %N A379205 G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 5)^(n+1). %H A379205 Paul D. Hanna, <a href="/A379205/b379205.txt">Table of n, a(n) for n = 1..230</a> %F A379205 G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas. %F A379205 (1) 1/x = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 5)^(n+1). %F A379205 (2) 1/x = Sum_{n=-oo..+oo} A(x)^(2*n) * (A(x)^n - 5)^n. %F A379205 (3) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 + 5*A(x)^(n+1))^n. %F A379205 (4) A(x) = x * Sum_{n=-oo..+oo} A(x)^(n^2) / (1 - 5*A(x)^(n+1))^(n+1). %F A379205 (5) A(B(x)) = x where B(x) = 1/( Sum_{n=-oo..+oo} x^n * (x^n + 5)^(n+1) ). %e A379205 G.f.: A(x) = x + 7*x^2 + 74*x^3 + 998*x^4 + 15268*x^5 + 251427*x^6 + 4345869*x^7 + 77751128*x^8 + 1427455842*x^9 + 26740178711*x^10 + ... %o A379205 (PARI) {a(n) = my(V=[0, 1], A); for(i=1, n, V=concat(V, 0); A = Ser(V); %o A379205 V[#V] = polcoef( sum(m=-#A, #A, A^m*(A^m + 5)^(m+1) ), #V-3); ); polcoef(A, n)} %o A379205 for(n=1, 40, print1(a(n), ", ")) %Y A379205 Cf. A379200, A379199, A166952, A378264, A379202, A379203, A379204. %K A379205 nonn %O A379205 1,2 %A A379205 _Paul D. Hanna_, Dec 20 2024