This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379215 #16 Dec 19 2024 08:53:11 %S A379215 1,6,24,106,460,1934,7952,32274,130068,522262,2093080,8380442, %T A379215 33538076,134184990,536805408,2147352610,8589672484,34359214118, %U A379215 137437904936,549753716778,2199019061292,8796084633646,35184355311664,140737454800946,562949886312500,2251799679467574 %N A379215 Number of minimal edge cuts in the complete bipartite graph K_{n,n}. %H A379215 Andrew Howroyd, <a href="/A379215/b379215.txt">Table of n, a(n) for n = 1..500</a> %H A379215 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>. %H A379215 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalEdgeCut.html">Minimal Edge Cut</a>. %H A379215 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-21,22,-8). %F A379215 a(n) = 2*(n + (2^(n-1) - 1)^2) for n > 1. - _Andrew Howroyd_, Dec 18 2024 %F A379215 G.f.: x*(1-2*x-3*x^2+18*x^3-8*x^4)/((-1+x)^2*(1-6*x+8*x^2)). - _Eric W. Weisstein_, Dec 18 2024 %t A379215 Table[Piecewise[{{1, n == 1}}, 2 ((2^(n - 1) - 1)^2 + n)], {n, 20}] %t A379215 {1} ~ Join ~ LinearRecurrence[{8, -21, 22, -8}, {6, 24, 106, 460}, 20] %t A379215 CoefficientList[Series[(1 - 2 x - 3 x^2 + 18 x^3 - 8 x^4)/((-1 + x)^2 (1 - 6 x + 8 x^2)), {x, 0, 20}], x] %o A379215 (PARI) a(n) = if(n==1, 1, 2*(n + (2^(n-1) - 1)^2)) \\ _Andrew Howroyd_, Dec 18 2024 %Y A379215 Cf. A377649. %K A379215 nonn,easy %O A379215 1,2 %A A379215 _Eric W. Weisstein_, Dec 18 2024 %E A379215 a(6) onwards from _Andrew Howroyd_, Dec 18 2024