cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379221 Square array A(n, k) = A048720(A065621(sigma((2n-1)^2)), sigma((2k-1)^2)), read by falling antidiagonals, (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), etc.

This page as a plain text file.
%I A379221 #12 Dec 22 2024 09:08:02
%S A379221 1,13,21,31,233,35,57,403,439,73,121,845,961,805,137,133,1549,1899,
%T A379221 1831,1765,397,183,2753,4011,4017,3943,3025,475,403,2331,4399,7665,
%U A379221 7537,4123,2159,695,307,7919,5945,9709,16177,9365,5737,7635,855,381,5839,12501,10447,17965,18389,10707,13261,5299,901,741,4953,9525,27083,24207,49465,24339,27295,10093,4537,1837
%N A379221 Square array A(n, k) = A048720(A065621(sigma((2n-1)^2)), sigma((2k-1)^2)), read by falling antidiagonals, (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), etc.
%H A379221 Antti Karttunen, <a href="/A379221/b379221.txt">Table of n, a(n) for n = 1..10440</a>
%H A379221 <a href="/index/Con#CongruCrossDomain">Index entries for sequences defined by congruent products between domains N and GF(2)[X]</a>.
%H A379221 <a href="/index/Ge#GF2X">Index entries for sequences related to polynomials in ring GF(2)[X]</a>.
%H A379221 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.
%F A379221 A(n, k) = A277320(A379223(n), A379223(k)).
%e A379221 The top left corner of the array:
%e A379221    n\k   |    1      2      3      4       5       6       7       8       9
%e A379221 (*2-1)^2 |    1      9     25     49      81     121     169     225     289
%e A379221 ---------+-------------------------------------------------------------------
%e A379221    1   1 |    1,    13,    31,    57,    121,    133,    183,    403,    307,
%e A379221    2   9 |   21,   233,   403,   845,   1549,   2753,   2331,   7919,   5839,
%e A379221    3  25 |   35,   439,   961,  1899,   4011,   4399,   5945,  12501,   9525,
%e A379221    4  49 |   73,   805,  1831,  4017,   7665,   9709,  10447,  27083,  17515,
%e A379221    5  81 |  137,  1765,  3943,  7537,  16177,  17965,  24207,  50315,  37163,
%e A379221    6 121 |  397,  3025,  4123,  9365,  18389,  49465,  60243,  86471, 108263,
%e A379221    7 169 |  475,  2159,  5737, 10707,  24339,  60215,  52817,  76125, 131005,
%e A379221    8 225 |  695,  7635, 13261, 27295,  51039,  87019,  76565, 245801, 183625,
%e A379221    9 289 |  855,  5299, 10093, 18047,  37823, 107915, 130229, 183305, 200041,
%e A379221   10 361 |  901,  4537, 12003, 22365,  46621, 118545,  98539, 162655, 248191,
%e A379221   11 441 | 1837,  8945, 24187, 43317,  90741, 232729, 201779, 311335, 504583,
%e A379221   12 529 | 1657, 11349, 18231, 40193,  66369, 205597, 231263, 338075, 449339,
%e A379221   13 625 | 1301, 14825, 25235, 56909, 105229, 170945, 156187, 508399, 387535,
%e A379221   14 729 | 3277, 22929, 36059, 81877, 134293, 416121, 464275, 684551, 888103,
%e A379221   15 841 | 1451, 15967, 28601, 50979, 110051, 181895, 139777, 469709, 346669,
%e A379221   16 961 | 1057, 13741, 32767, 58137, 125785, 132133, 182871, 425971, 322387,
%o A379221 (PARI)
%o A379221 up_to = 66;
%o A379221 A048720(b, c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
%o A379221 A065621(n) = bitxor(n-1, n+n-1);
%o A379221 A379221sq(x,y) = A048720(A065621(sigma((x+x-1)^2)), sigma((y+y-1)^2));
%o A379221 A379221list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379221sq(col,(a-(col-1))))); (v); };
%o A379221 v379221 = A379221list(up_to);
%o A379221 A379221(n) = v379221[n];
%Y A379221 Cf. A000203, A016754, A048720, A065621, A277320.
%Y A379221 Cf. A379223 (row 1), A379224 (column 1).
%Y A379221 Cf. A379121, A379122, A379123, A379124, A379125.
%Y A379221 Cf. also A065768, A379220.
%K A379221 nonn,tabl
%O A379221 1,2
%A A379221 _Antti Karttunen_, Dec 22 2024