cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379258 a(n) is the number of iterations of the Euler phi function needed to reach 1 starting at the n-th 3-smooth number.

This page as a plain text file.
%I A379258 #11 Dec 20 2024 02:43:54
%S A379258 1,2,3,3,3,4,4,4,5,4,5,5,6,5,6,5,7,6,6,7,6,8,7,6,8,7,7,9,8,7,9,8,7,10,
%T A379258 9,8,8,10,9,8,11,10,9,8,11,10,9,12,9,11,10,9,12,11,10,13,9,12,11,10,
%U A379258 13,10,12,11,14,10,13,12,11,14,10,13,12,15,11,14,11
%N A379258 a(n) is the number of iterations of the Euler phi function needed to reach 1 starting at the n-th 3-smooth number.
%H A379258 Amiram Eldar, <a href="/A379258/b379258.txt">Table of n, a(n) for n = 1..10000</a>
%F A379258 a(n) = A049108(A003586(n)).
%F A379258 a(n) = valuation(A003586(n), 2) + valuation(A003586(n), 3) + 1 + [valuation(A003586(n), 2) == 0] for n > 1, where [] is the Iverson bracket.
%F A379258 a(n) = A022328(n) + A022329(n) + 1 + [n is in A022330], for n > 1.
%F A379258 a(A022330(n)) = n + 2 for n >= 1.
%F A379258 a(A022331(n)) = n + 1 for n >= 0.
%F A379258 a(A202821(n)) = 2*n + 1, for n >= 0.
%e A379258 a(6) = 4 because the 6th 3-smooth number is A003586(6) = 8, and 4 iterations of phi are needed to reach 1: 8 -> 4 -> 2 -> 1.
%t A379258 f[n_] := Module[{e2 = IntegerExponent[n, 2], e3 = IntegerExponent[n, 3]}, e2 + e3 + 1 + Boole[e2 == 0]]; f[1] = 1; With[{max = 3*10^4}, f /@ Sort[Flatten[Table[2^i*3^j, {i, 0, Log2[max]}, {j, 0, Log[3, max/2^i]}]]]]
%o A379258 (PARI) list(lim) = {my(e2, e3); print1(1, ", "); for(k = 2, lim, e2 = valuation(k, 2); e3 = valuation(k, 3); if(k == (1 << e2) * 3^e3, print1(e2 + e3 + 1 + (e2 == 0), ", ")));}
%Y A379258 Cf. A000010, A003586, A049108, A086420, A022328, A022329, A022330, A022331, A202821.
%K A379258 nonn,easy
%O A379258 1,2
%A A379258 _Amiram Eldar_, Dec 19 2024