This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379265 #22 Jan 11 2025 03:59:21 %S A379265 0,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6, %T A379265 6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, %U A379265 8,8,9,9,10,11,12,13,13,14,14,14,14,14,15 %N A379265 a(n) is the number of coincidences of the first n terms of this sequence and A379266, i.e., the number of equalities a(k) = A379266(k) for 0 <= k < n. %C A379265 a(n) appears to grow roughly like sqrt(n). %H A379265 Pontus von Brömssen, <a href="/A379265/b379265.txt">Table of n, a(n) for n = 0..9999</a> %H A379265 Pontus von Brömssen, <a href="/A379265/a379265.png">Plot of A379265(n), A379266(n), and sqrt(n) for n=0..100000</a>. %F A379265 For n >= 1, a(n) = a(n-1)+1 if a(n-1) = A379266(n-1), otherwise a(n) = a(n-1). %o A379265 (Python) %o A379265 def A379265_list(nterms): %o A379265 A = [] %o A379265 A379266 = [] %o A379265 for n in range(nterms): %o A379265 if n != 0: %o A379265 a += (a==A379266[-1]) %o A379265 else: %o A379265 a = 0 %o A379265 b = sum(1 for x,y in zip(A,reversed(A379266)) if x==y) %o A379265 A.append(a) %o A379265 A379266.append(b) %o A379265 return A %Y A379265 Cf. A272727, A379266, A379297. %K A379265 nonn %O A379265 0,3 %A A379265 _Pontus von Brömssen_, Dec 19 2024