This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379266 #22 May 06 2025 15:37:53 %S A379266 0,1,0,2,0,1,1,2,1,0,3,1,0,2,0,2,2,2,2,3,3,3,1,0,3,2,3,3,4,5,4,4,4,3, %T A379266 3,3,2,2,2,3,6,6,6,6,8,7,6,5,5,5,5,4,4,4,4,4,4,4,3,4,2,1,0,5,4,4,5,6, %U A379266 7,8,7,9,10,11,12,12,13,16,16,16,16,14,12 %N A379266 a(n) is the number of coincidences of the first n terms of this sequence and the first n terms of A379265 in reverse order, i.e., the number of equalities a(k) = A379265(n-1-k) for 0 <= k < n. %C A379266 a(n) appears to grow roughly like sqrt(n). %H A379266 Pontus von Brömssen, <a href="/A379266/b379266.txt">Table of n, a(n) for n = 0..9999</a> %H A379266 Pontus von Brömssen, <a href="/A379265/a379265.png">Plot of A379265(n), A379266(n), and sqrt(n) for n=0..100000</a>. %o A379266 (Python) %o A379266 def A379266_list(nterms): %o A379266 A = [] %o A379266 A379265 = [] %o A379266 for n in range(nterms): %o A379266 a = sum(1 for x, y in zip(A, reversed(A379265)) if x==y) %o A379266 if n != 0: %o A379266 b += (b==A[-1]) %o A379266 else: %o A379266 b = 0 %o A379266 A.append(a) %o A379266 A379265.append(b) %o A379266 return A %Y A379266 Cf. A272727, A379265, A379297. %K A379266 nonn %O A379266 0,4 %A A379266 _Pontus von Brömssen_, Dec 19 2024