cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379266 a(n) is the number of coincidences of the first n terms of this sequence and the first n terms of A379265 in reverse order, i.e., the number of equalities a(k) = A379265(n-1-k) for 0 <= k < n.

This page as a plain text file.
%I A379266 #22 May 06 2025 15:37:53
%S A379266 0,1,0,2,0,1,1,2,1,0,3,1,0,2,0,2,2,2,2,3,3,3,1,0,3,2,3,3,4,5,4,4,4,3,
%T A379266 3,3,2,2,2,3,6,6,6,6,8,7,6,5,5,5,5,4,4,4,4,4,4,4,3,4,2,1,0,5,4,4,5,6,
%U A379266 7,8,7,9,10,11,12,12,13,16,16,16,16,14,12
%N A379266 a(n) is the number of coincidences of the first n terms of this sequence and the first n terms of A379265 in reverse order, i.e., the number of equalities a(k) = A379265(n-1-k) for 0 <= k < n.
%C A379266 a(n) appears to grow roughly like sqrt(n).
%H A379266 Pontus von Brömssen, <a href="/A379266/b379266.txt">Table of n, a(n) for n = 0..9999</a>
%H A379266 Pontus von Brömssen, <a href="/A379265/a379265.png">Plot of A379265(n), A379266(n), and sqrt(n) for n=0..100000</a>.
%o A379266 (Python)
%o A379266 def A379266_list(nterms):
%o A379266     A = []
%o A379266     A379265 = []
%o A379266     for n in range(nterms):
%o A379266         a = sum(1 for x, y in zip(A, reversed(A379265)) if x==y)
%o A379266         if n != 0:
%o A379266             b += (b==A[-1])
%o A379266         else:
%o A379266             b = 0
%o A379266         A.append(a)
%o A379266         A379265.append(b)
%o A379266     return A
%Y A379266 Cf. A272727, A379265, A379297.
%K A379266 nonn
%O A379266 0,4
%A A379266 _Pontus von Brömssen_, Dec 19 2024