This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379270 #10 Dec 20 2024 20:42:59 %S A379270 1000,10001,10010,10100,11000,100011,100101,100110,101001,101010, %T A379270 101100,110001,110010,110100,111000,1000111,1001011,1001101,1001110, %U A379270 1010011,1010101,1010110,1011001,1011010,1011100,1100011,1100101,1100110,1101001,1101010,1101100 %N A379270 Numbers with only digits "1" and three digits "0". %C A379270 Binary representation of A379269. %C A379270 Numbers in A007088 with three 0 digits. %F A379270 a(n) = A007088(A379269(n)). %t A379270 Select[Range[10^7],Count[IntegerDigits[#],0]==3&&Max[IntegerDigits[#]]==1&] (* _James C. McMahon_, Dec 20 2024 *) %o A379270 (Python) %o A379270 from math import isqrt, comb %o A379270 from sympy import integer_nthroot %o A379270 def A056557(n): return (k:=isqrt(r:=n+1-comb((m:=integer_nthroot(6*(n+1), 3)[0])-(n<comb(m+2, 3))+2, 3)<<1))-((r<<2)<=(k<<2)*(k+1)+1) %o A379270 def A333516(n): return (r:=n-1-comb((m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3))+1, 3))-comb((k:=isqrt(m:=r+1<<1))+(m>k*(k+1)), 2)+1 %o A379270 def A360010(n): return (m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2, 3)) %o A379270 def A379270(n): %o A379270 a = (a2:=integer_nthroot(24*n, 4)[0])+(n>comb(a2+2, 4))+2 %o A379270 j = comb(a,4)-n %o A379270 b, c, d = A360010(j+1)+1, A056557(j)+1, A333516(j+1)-1 %o A379270 return (10**a-1)//9-10**b-10**c-10**d %Y A379270 Cf. A007088, A379269, A023416, A056557, A333516, A360010, A360573. %K A379270 nonn,base %O A379270 1,1 %A A379270 _Chai Wah Wu_, Dec 19 2024