cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379282 G.f. A(x) satisfies A(x) = 1/( (1 - x*A(x)^2) * (1 - x*A(x)) )^2.

This page as a plain text file.
%I A379282 #10 Dec 20 2024 02:43:03
%S A379282 1,4,34,376,4743,64710,929906,13865206,212509079,3327383632,
%T A379282 52994140217,855842582128,13982509284464,230686414552016,
%U A379282 3837897905208588,64314848237403878,1084624929809399857,18393856772155371200,313487249756740510907,5366521088581773011788
%N A379282 G.f. A(x) satisfies A(x) = 1/( (1 - x*A(x)^2) * (1 - x*A(x)) )^2.
%F A379282 G.f.: B(x)^2 where B(x) is the g.f. of A379284.
%F A379282 a(n) = 2 * Sum_{k=0..n} binomial(2*n+3*k+2,k) * binomial(3*n+k+1,n-k)/(2*n+3*k+2).
%o A379282 (PARI) a(n) = 2*sum(k=0, n, binomial(2*n+3*k+2, k)*binomial(3*n+k+1, n-k)/(2*n+3*k+2));
%Y A379282 Cf. A371675, A379251, A379279.
%Y A379282 Cf. A379281, A379283.
%Y A379282 Cf. A379284.
%K A379282 nonn
%O A379282 0,2
%A A379282 _Seiichi Manyama_, Dec 19 2024