cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379296 First differences of A379290.

This page as a plain text file.
%I A379296 #14 Dec 21 2024 23:52:13
%S A379296 7,4,29,46,6,139,8,171,239,8,10,500,6,12,822,6,6,124,6,6,6,6,1211,
%T A379296 1839,8,6,6,6,6,6,168,5546,8,24,122,6,14,6,6,6,6,6,3109,6,10,4565,6,
%U A379296 34,574,6,34,6,6,6,6,6,6,11195,6,36,6,6,426,418,8,42,10068,8,8,6,6,6,6,25229,6,6,6,6,6,6,6,6,6,6,6,6,686,6,64,6,6,6,6,394,22241,8,6
%N A379296 First differences of A379290.
%C A379296 These are the differences between the indices where the prime terms appear in A379248. See that sequence for further details. Note the long runs of 6 - see the example below.
%H A379296 Scott R. Shannon, <a href="/A379296/b379296.txt">Table of n, a(n) for n = 1..250</a>
%e A379296 A379248(1169) = 41, A379248(1175) = 43, with a difference in indices of 6. Worth noting is the values of the terms in this, and similar, ranges:
%e A379296 .
%e A379296 .
%e A379296 A379248(1167) = 943 = 23*41 , the lowest unseen multiple of 23.
%e A379296 A379248(1168) = 1681 = 41^2.
%e A379296 A379248(1169) = 41.
%e A379296 A379248(1170) = 3362 = 2*41^2 , which shows the pattern of p^2 -> p -> 2*p^2.
%e A379296 A379248(1171) = 697 = 17*41 , the lowest unseen multiple of 17.
%e A379296 A379248(1172) = 2023 = 7*17^2 , the lowest unseen multiple of 17^2.
%e A379296 A379248(1173) = 731 = 17*43, the lowest unseen multiple of 17.
%e A379296 A379248(1174) = 1849 = 43^2.
%e A379296 A379248(1175) = 43.
%e A379296 .
%e A379296 .
%Y A379296 Cf. A379290, A379248, A379291, A379296, A064413, A064955.
%K A379296 nonn
%O A379296 1,1
%A A379296 _Scott R. Shannon_, Dec 20 2024