A379299 a(n) is the maximum number k such that every permutation of the integers mod n admits at least k collinear triples.
0, 0, 1, 0, 2, 0, 3, 0, 5, 2, 5, 0, 6, 9, 6, 4, 8
Offset: 1
Examples
a(5)=2 because the permutation (in one-line notation) 0,1,3,2,4 admits two collinear triples mod 5: {(0,0),(1,1),(4,4)} is on the line y=x and {(0,0),(3,2),(2,3)} is on the line y=4*x; and all other permutations admit at least 2 collinear triples.
Links
- Joshua Cooper and Jack Hyatt, Permutations minimizing the number of collinear triples, arXiv:2501.02331 [math.CO], 2025. See p. 7.
- Joshua N. Cooper and József Solymosi, Collinear points in permutations, Ann. Comb. 9 (2005), no. 2, 169-175; preprint, arXiv:math/0408396 [math.CO], 2004.
- Liangpan Li, Collinear triples in permutations, Innov. Incidence Geom. 8 (2008), 171--173; arXiv preprint, arXiv:0805.0410 [math.CO], 2008.
Formula
a(n) = (n-1)/2 for odd primes n.
Comments