This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379312 #7 Dec 28 2024 16:27:31 %S A379312 2,3,5,11,14,17,21,26,31,35,38,39,41,46,57,58,59,65,67,69,74,77,83,86, %T A379312 87,94,95,98,106,109,111,115,119,122,127,129,141,142,143,145,146,147, %U A379312 157,158,159,178,179,182,183,185,191,194,202,206,209,211,213,214 %N A379312 Positive integers whose prime indices include a unique 1 or prime number. %C A379312 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A379312 The terms together with their prime indices begin: %e A379312 2: {1} %e A379312 3: {2} %e A379312 5: {3} %e A379312 11: {5} %e A379312 14: {1,4} %e A379312 17: {7} %e A379312 21: {2,4} %e A379312 26: {1,6} %e A379312 31: {11} %e A379312 35: {3,4} %e A379312 38: {1,8} %e A379312 39: {2,6} %e A379312 41: {13} %e A379312 46: {1,9} %e A379312 57: {2,8} %e A379312 58: {1,10} %e A379312 59: {17} %e A379312 65: {3,6} %e A379312 67: {19} %e A379312 69: {2,9} %e A379312 74: {1,12} %e A379312 77: {4,5} %t A379312 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A379312 Select[Range[1000],Length[Select[prix[#],#==1||PrimeQ[#]&]]==1&] %Y A379312 These "old" primes are listed by A008578. %Y A379312 For no composite parts we have A302540, counted by A034891 (strict A036497). %Y A379312 For all composite parts we have A320629, counted by A023895 (strict A204389). %Y A379312 For a unique prime part we have A331915, counted by A379304 (strict A379305). %Y A379312 Positions of ones in A379311, see A379313. %Y A379312 Partitions of this type are counted by A379314, strict A379315. %Y A379312 A000040 lists the prime numbers, differences A001223. %Y A379312 A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310. %Y A379312 A055396 gives least prime index, greatest A061395. %Y A379312 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A379312 A080339 is the characteristic function for the old prime numbers. %Y A379312 A376682 gives k-th differences of old prime numbers, see A030016, A075526. %Y A379312 Other counts of prime indices: %Y A379312 - A257991 odd, see A000041, A000070, A066207, A349158. %Y A379312 - A257992 even, see A000009, A038348, A066208, A379317. %Y A379312 - A257994 prime, see A000586, A000607, A076610, A331386. %Y A379312 - A330944 nonprime, see A002095, A096258, A320628, A330945. %Y A379312 - A379306 squarefree, see A302478, A379308, A379309, A379316. %Y A379312 - A379310 nonsquarefree, see A114374, A256012, A379307. %Y A379312 Cf. A038550, A073445, A087436, A173390, A379300, A379301, A379302. %K A379312 nonn %O A379312 1,1 %A A379312 _Gus Wiseman_, Dec 28 2024