This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379313 #5 Dec 28 2024 19:35:57 %S A379313 2,3,4,5,6,8,9,10,11,12,14,15,16,17,18,20,21,22,24,25,26,27,28,30,31, %T A379313 32,33,34,35,36,38,39,40,41,42,44,45,46,48,50,51,52,54,55,56,57,58,59, %U A379313 60,62,63,64,65,66,67,68,69,70,72,74,75,76,77,78,80,81,82 %N A379313 Positive integers whose prime indices are not all composite. %C A379313 Or, positive integers whose prime indices include at least one 1 or prime number. %C A379313 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A379313 The terms together with their prime indices begin: %e A379313 2: {1} %e A379313 3: {2} %e A379313 4: {1,1} %e A379313 5: {3} %e A379313 6: {1,2} %e A379313 8: {1,1,1} %e A379313 9: {2,2} %e A379313 10: {1,3} %e A379313 11: {5} %e A379313 12: {1,1,2} %e A379313 14: {1,4} %e A379313 15: {2,3} %e A379313 16: {1,1,1,1} %e A379313 17: {7} %e A379313 18: {1,2,2} %e A379313 20: {1,1,3} %e A379313 21: {2,4} %e A379313 22: {1,5} %e A379313 24: {1,1,1,2} %t A379313 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A379313 Select[Range[100],!And@@CompositeQ/@prix[#]&] %Y A379313 Partitions of this type are counted by A000041 - A023895. %Y A379313 The "old" primes are listed by A008578. %Y A379313 For no composite parts we have A302540, counted by A034891 (strict A036497). %Y A379313 The complement is A320629, counted by A023895 (strict A204389). %Y A379313 For a unique prime we have A331915, counted by A379304 (strict A379305). %Y A379313 Positions of nonzeros in A379311. %Y A379313 For a unique 1 or prime we have A379312, counted by A379314 (strict A379315). %Y A379313 A000040 lists the prime numbers, differences A001223. %Y A379313 A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310. %Y A379313 A055396 gives least prime index, greatest A061395. %Y A379313 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A379313 A080339 is the characteristic function for the old prime numbers. %Y A379313 A376682 gives k-th differences of old prime numbers, see A030016, A075526. %Y A379313 A377033 gives k-th differences of composite numbers, see A073445, A377034. %Y A379313 Other counts of prime indices: %Y A379313 - A257991 odd, see A000041, A000070, A066207, A349158. %Y A379313 - A257992 even, see A000009, A038348, A066208, A379317. %Y A379313 - A257994 prime, see A000586, A000607, A076610, A331386. %Y A379313 - A330944 nonprime, see A002095, A096258, A320628, A330945. %Y A379313 - A379306 squarefree, see A302478, A379308, A379309, A379316. %Y A379313 - A379310 nonsquarefree, see A114374, A256012, A379307. %Y A379313 `Cf. A038550, A087436, A173390, A379300, A379301. %K A379313 nonn %O A379313 1,1 %A A379313 _Gus Wiseman_, Dec 28 2024