This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379315 #10 Dec 29 2024 00:42:00 %S A379315 0,1,1,1,0,2,1,3,1,3,2,7,3,7,4,10,7,15,7,17,13,23,16,31,20,37,31,48, %T A379315 38,62,48,76,68,93,80,119,105,147,137,175,166,226,208,267,263,326,322, %U A379315 407,391,481,492,586,591,714,714,849,884,1020,1050,1232,1263 %N A379315 Number of strict integer partitions of n with a unique 1 or prime part. %C A379315 The "old" primes are listed by A008578. %H A379315 Andrew Howroyd, <a href="/A379315/b379315.txt">Table of n, a(n) for n = 0..1000</a> %e A379315 The a(10) = 2 through a(15) = 10 partitions: %e A379315 (8,2) (11) (9,3) (13) (9,5) (8,7) %e A379315 (9,1) (6,5) (10,2) (7,6) (12,2) (10,5) %e A379315 (7,4) (6,4,2) (8,5) (8,4,2) (11,4) %e A379315 (8,3) (10,3) (9,4,1) (12,3) %e A379315 (9,2) (12,1) (14,1) %e A379315 (10,1) (6,4,3) (6,5,4) %e A379315 (6,4,1) (8,4,1) (8,4,3) %e A379315 (8,6,1) %e A379315 (9,4,2) %e A379315 (10,4,1) %t A379315 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?(#==1||PrimeQ[#]&)]==1&]],{n,0,30}] %o A379315 (PARI) seq(n)={Vec(sum(k=1, n, if(isprime(k) || k==1, x^k)) * prod(k=4, n, 1 + if(!isprime(k), x^k), 1 + O(x^n)), -n-1)} \\ _Andrew Howroyd_, Dec 28 2024 %Y A379315 For all prime parts we have A000586, non-strict A000607 (ranks A076610). %Y A379315 For no prime parts we have A096258, non-strict A002095 (ranks A320628). %Y A379315 For a unique composite part we have A379303, non-strict A379302 (ranks A379301). %Y A379315 Considering 1 nonprime gives A379305, non-strict A379304 (ranks A331915). %Y A379315 For squarefree instead of old prime we have A379309, non-strict A379308 (ranks A379316). %Y A379315 Ranked by A379312 /\ A005117 = squarefree positions of 1 in A379311. %Y A379315 The non-strict version is A379314. %Y A379315 A000040 lists the prime numbers, differences A001223. %Y A379315 A000041 counts integer partitions, strict A000009. %Y A379315 A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310. %Y A379315 A376682 gives k-th differences of old primes. %Y A379315 Cf. A000070, A023895, A034891, A036497, A038348, A095195, A175804, A204389, A257994, A302540. %K A379315 nonn %O A379315 0,6 %A A379315 _Gus Wiseman_, Dec 28 2024