This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379317 #5 Jan 01 2025 09:54:53 %S A379317 3,6,7,12,13,14,15,19,24,26,28,29,30,33,35,37,38,43,48,51,52,53,56,58, %T A379317 60,61,65,66,69,70,71,74,75,76,77,79,86,89,93,95,96,101,102,104,106, %U A379317 107,112,113,116,119,120,122,123,130,131,132,138,139,140,141,142 %N A379317 Positive integers with a unique even prime index. %C A379317 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A379317 The terms together with their prime indices begin: %e A379317 3: {2} %e A379317 6: {1,2} %e A379317 7: {4} %e A379317 12: {1,1,2} %e A379317 13: {6} %e A379317 14: {1,4} %e A379317 15: {2,3} %e A379317 19: {8} %e A379317 24: {1,1,1,2} %e A379317 26: {1,6} %e A379317 28: {1,1,4} %e A379317 29: {10} %e A379317 30: {1,2,3} %e A379317 33: {2,5} %e A379317 35: {3,4} %e A379317 37: {12} %e A379317 38: {1,8} %e A379317 43: {14} %e A379317 48: {1,1,1,1,2} %t A379317 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A379317 Select[Range[100],Length[Select[prix[#],EvenQ]]==1&] %Y A379317 Partitions of this type are counted by A038348 (strict A096911). %Y A379317 For all even parts we have A066207, counted by A035363 (strict A000700). %Y A379317 For no even parts we have A066208, counted by A000009 (strict A035457). %Y A379317 Positions of 1 in A257992. %Y A379317 A000040 lists the primes, differences A001223. %Y A379317 A055396 gives least prime index, greatest A061395. %Y A379317 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A379317 Other counts of prime indices: %Y A379317 - A257991 odd, see A000041, A000070, A349158. %Y A379317 - A257994 prime, see A002095, A096258, A320628, A331386, A331915, A379304, A379305. %Y A379317 - A330944 nonprime, see A000586, A000607, A076610, A330945. %Y A379317 - A379300 composite, see A023895, A034891, A036497, A302540, A379301. %Y A379317 - A379311 old prime, see A204389, A320629, A379312-A379315. %Y A379317 Cf. A000720, A038550, A087436. %K A379317 nonn %O A379317 1,1 %A A379317 _Gus Wiseman_, Dec 29 2024