cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379318 Odd numbers whose product of prime indices is a multiple of their sum of prime indices.

This page as a plain text file.
%I A379318 #10 Jan 19 2025 09:35:45
%S A379318 3,5,7,9,11,13,17,19,23,29,31,37,41,43,47,49,53,59,61,63,65,67,71,73,
%T A379318 79,81,83,89,97,101,103,107,109,113,125,127,131,137,139,149,151,157,
%U A379318 163,165,167,169,173,179,181,191,193,197,199,211,223,227,229,233,239
%N A379318 Odd numbers whose product of prime indices is a multiple of their sum of prime indices.
%C A379318 Contains all odd primes.
%C A379318 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum and product of prime indices are A056239 and A003963 respectively.
%e A379318 The terms together with their prime indices begin:
%e A379318      2: {1}         53: {16}           109: {29}
%e A379318      3: {2}         59: {17}           113: {30}
%e A379318      5: {3}         61: {18}           125: {3,3,3}
%e A379318      7: {4}         63: {2,2,4}        127: {31}
%e A379318      9: {2,2}       65: {3,6}          131: {32}
%e A379318     11: {5}         67: {19}           137: {33}
%e A379318     13: {6}         71: {20}           139: {34}
%e A379318     17: {7}         73: {21}           149: {35}
%e A379318     19: {8}         79: {22}           150: {1,2,3,3}
%e A379318     23: {9}         81: {2,2,2,2}      151: {36}
%e A379318     29: {10}        83: {23}           154: {1,4,5}
%e A379318     30: {1,2,3}     84: {1,1,2,4}      157: {37}
%e A379318     31: {11}        89: {24}           163: {38}
%e A379318     37: {12}        97: {25}           165: {2,3,5}
%e A379318     41: {13}       101: {26}           167: {39}
%e A379318     43: {14}       103: {27}           169: {6,6}
%e A379318     47: {15}       107: {28}           173: {40}
%e A379318     49: {4,4}      108: {1,1,2,2,2}    179: {41}
%t A379318 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A379318 Select[Range[2,100],OddQ[#]&&Divisible[Times@@prix[#],Total[prix[#]]]&]
%Y A379318 Including evens gives A326149, counted by A057568.
%Y A379318 For nonprime instead of odd we get A326150.
%Y A379318 For even instead of odd we get A379319, counted by A379320.
%Y A379318 Partitions of this type are counted by A379734, strict A379735, see A379733.
%Y A379318 For squarefree instead of odd we get A379844, even case A379845.
%Y A379318 Counting and ranking multisets by comparing sum and product:
%Y A379318 - same: A001055, ranks A301987
%Y A379318 - divisible: A057567, ranks A326155
%Y A379318 - greater than: A096276 shifted right, ranks A325038
%Y A379318 - greater or equal: A096276, ranks A325044
%Y A379318 - less than: A114324, ranks A325037, see A318029, A379720
%Y A379318 - less or equal: A319005, ranks A379721, see A025147
%Y A379318 - different: A379736, ranks A379722, see A111133
%Y A379318 Cf. A069016, A301988, A318950, A319000, A319916, A324851, A325041, A326152, A379671, A379678.
%K A379318 nonn
%O A379318 1,1
%A A379318 _Gus Wiseman_, Jan 16 2025