cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379329 G.f. A(x) satisfies A(x) = 1/sqrt( (1 - 2*x) * (1 - 2*x*A(x)) ).

This page as a plain text file.
%I A379329 #8 Dec 21 2024 11:10:16
%S A379329 1,2,6,22,92,420,2034,10262,53330,283410,1532698,8406698,46650072,
%T A379329 261416000,1477208374,8407900890,48158339716,277375020772,
%U A379329 1605477915982,9333727605762,54478721494436,319120526072380,1875410643820166,11054224586789010,65334486288626586,387118590382759994
%N A379329 G.f. A(x) satisfies A(x) = 1/sqrt( (1 - 2*x) * (1 - 2*x*A(x)) ).
%F A379329 a(n) = 2^n * Sum_{k=0..n} binomial(n/2+k/2+1/2,k) * binomial(3*n/2-3*k/2-1/2,n-k)/(n+k+1).
%o A379329 (PARI) a(n) = 2^n*sum(k=0, n, binomial(n/2+k/2+1/2, k)*binomial(3*n/2-3*k/2-1/2, n-k)/(n+k+1));
%Y A379329 Cf. A379330, A379331.
%K A379329 nonn
%O A379329 0,2
%A A379329 _Seiichi Manyama_, Dec 21 2024