This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379338 #13 Aug 03 2025 12:36:39 %S A379338 5,3,5,8,9,8,3,8,4,8,6,2,2,4,5,4,1,2,9,4,5,1,0,7,3,1,6,9,8,8,2,5,5,2, %T A379338 6,6,1,1,4,3,8,9,4,9,2,3,7,9,2,3,8,7,4,3,8,8,8,3,8,6,0,4,1,0,9,6,1,3, %U A379338 3,9,6,6,1,8,2,3,9,9,9,2,5,8,3,7,7,0,7,6,2,6,4,8,5,5,0,2,8,4,8,6 %N A379338 Decimal expansion of 2*(2 - sqrt(3)). %C A379338 The greatest possible minimum distance between 7 points in a unit square (Schaer and Meir, 1965; Schaer, 1965; Croft et al., 1991). - _Amiram Eldar_, Feb 24 2025 %D A379338 Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108. %D A379338 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487. %H A379338 J. Schaer and A. Meir, <a href="https://doi.org/10.4153/CMB-1965-004-x">On a geometric extremum problem</a>, Canadian Mathematical Bulletin, Vol. 8, No. 1 (1965), pp. 21-27. %H A379338 J. Schaer, <a href="https://doi.org/10.4153/CMB-1965-018-9">The densest packing of 9 circles in a square</a>, Canadian Mathematical Bulletin, Vol. 8, No. 3 (1965), pp. 273-277. %F A379338 Minimal polynomial: x^2 - 8*x + 4. - _Stefano Spezia_, Aug 03 2025 %e A379338 0.535898384862245412945107316988255266114389492379... %t A379338 RealDigits[2(2-Sqrt[3]),10,100][[1]] %Y A379338 Cf. A002194, A019913. %K A379338 nonn,cons,easy %O A379338 0,1 %A A379338 _Stefano Spezia_, Dec 21 2024