This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379341 #28 May 24 2025 00:19:15 %S A379341 1,4,9,12,18,24,36,48,54,60,84,90,108,126,162,180,186,192,216,222,252, %T A379341 270,330,360,390,396,480,486,552,582,690,696,702,708,732,738,768,786, %U A379341 846,876,918,924,1044,1050,1140,1194,1350,1404,1434,1440,1524,1530,1632 %N A379341 Population of elementary triangular automaton rule 50 at generation n, starting from a lone 1 cell at generation 0. %C A379341 An Elementary Triangular Automaton (ETA) is a cellular automaton in the triangular grid where cells hold binary states and rules are local to the first neighborhood. There are 256 possible ETA rules. %C A379341 Rule 50 (110010 in binary): %C A379341 ----------------------------------------------- %C A379341 |state of the cell |1|1|1|1|0|0|0|0| %C A379341 |sum of the neighbors' states |3|2|1|0|3|2|1|0| %C A379341 |cell's next state |0|0|1|1|0|0|1|0| %C A379341 ----------------------------------------------- %H A379341 Paul Cousin, <a href="/A379341/b379341.txt">Table of n, a(n) for n = 0..16384</a> %H A379341 Paul Cousin, <a href="/A379341/a379341.pdf">Illustration for n = 0..128</a> %H A379341 Paul Cousin, <a href="https://triangular-automata.net">Triangular Automata</a> %H A379341 Paul Cousin, <a href="https://triangular-automata.net/?p=rule-50">Rule 50</a> %H A379341 Paul Cousin, <a href="https://triangular-automata.net/?p=integer-sequences">Triangular Automata Integer Sequences</a> %H A379341 Paul Cousin, <a href="https://doi.org/10.25088/ComplexSystems.33.3.253">Triangular Automata: The 256 Elementary Cellular Automata of the Two-Dimensional Plane</a>, Complex Systems, 33(3), 2024, pp. 253-276. %K A379341 nonn %O A379341 0,2 %A A379341 _Paul Cousin_, May 23 2025