A379342 a(n) = A378684(A378684(n)).
1, 5, 2, 4, 3, 6, 14, 7, 12, 9, 11, 10, 13, 8, 15, 27, 16, 25, 18, 23, 20, 22, 21, 24, 19, 26, 17, 28, 44, 29, 42, 31, 40, 33, 38, 35, 37, 36, 39, 34, 41, 32, 43, 30, 45, 65, 46, 63, 48, 61, 50, 59, 52, 57, 54, 56, 55, 58, 53, 60, 51, 62, 49, 64, 47, 66
Offset: 1
Examples
Triangle array begins: k= 1 2 3 4 5 6 7 8 9 n=1: 1; n=2: 5, 2, 4, 3, 6; n=3: 14, 7, 12, 9, 11, 10, 13, 8, 15; ... (1, 5, 2, ..., 8, 15) = (A378684(1), A378684(2), A378684(3), ..., A378684(14), A378684(15))^2. (1, 5, 2, ..., 8, 15) = (A378684(1), A378684(2), A378684(3), ..., A378684(14), A378684(15))^(-1). For n > 1, each row of triangle array joins two consecutive upward antidiagonals in the table: 1, 2, 6, 9, 15, ... 5, 3, 12, 8, 23, ... 4, 7, 13, 18, 26, ... 14, 10, 25, 19, 40, ... 11, 16, 24, 31, 41, ... ... Subtracting (n-1)*(2*n-3) from each term in row n produces a permutation of numbers from 1 to 4*n-3: 1; 4, 1, 3, 2, 5; 8, 1, 6, 3, 5, 4, 7, 2, 9.
Links
- Boris Putievskiy, Table of n, a(n) for n = 1..9730
- Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
- Boris Putievskiy, The Alternating Group A4: Subgroups and the Cayley Table (2025).
- Eric Weisstein's World of Mathematics, Alternating Group
- Index entries for sequences that are permutations of the natural numbers.
Crossrefs
Programs
-
Mathematica
P[n_,k_]:=If[OddQ[k],Max[k,4 n-3-k],Min[k-1,4 n-2-k]] Nmax=3;Flatten[Table[P[n,k]+(n-1)*(2*n-3),{n,1,Nmax},{k,1,4*n-3}]]
Formula
Linear sequence: (a(1), a(2), ..., a(A000384(n+1))) is a permutation of the positive integers from 1 to A000384(n+1). ord(a(1), a(2), ..., a(A000384(n+1))) = 3, where ord is the order of the permutation. (a(1), a(2), ..., a(A000384(n+1))) = (A378684(1), A378684(2), ..., A378684(A000384(n+1)))^(-1).
Triangular array T(n,k) for 1 <= k <= 4n - 3 (see Example): T(n,k) = A000384(n-1) + P(n,k), P(n,k) = max(k, 4n - 3 - k) if k == 1 (mod 2), P(n,k) = min(k - 1, 4n - 2 - k) if k == 0 (mod 2).
Comments