This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379354 #21 Jan 03 2025 01:35:10 %S A379354 3,7,3,3,7,29,43,11,61,71,19,191,43,53,7,239,31,173,43,137,79,53,13, %T A379354 557,619,47,271,797,463,83,211,467,229,131,199,359,1249,887,853,641, %U A379354 109,257,1153,1031,613,953,607,641,499,359,1297,1031,2137,401,283,29,1321,1499,547,83,397,2153,1759,1277 %N A379354 Beginning with 3, least prime such that concatenation of first n terms is prime. %H A379354 Michael S. Branicky, <a href="/A379354/b379354.txt">Table of n, a(n) for n = 1..1000</a> %t A379354 w = {3}; %t A379354 Do[k = 1; %t A379354 q = Monitor[ %t A379354 Parallelize[ %t A379354 While[True, %t A379354 If[PrimeQ[FromDigits[ %t A379354 Join @@ IntegerDigits /@ Append[w, Prime[k]]]], Break[]]; k++]; %t A379354 Prime[k]], k]; %t A379354 w = Append[w, q], {i, 2, 57}]; %t A379354 w %o A379354 (Python) %o A379354 from itertools import count, islice %o A379354 from gmpy2 import digits, is_prime, mpz, next_prime %o A379354 def agen(): # generator of terms %o A379354 s, an = "", 3 %o A379354 while True: %o A379354 yield int(an) %o A379354 s += digits(an) %o A379354 p = 3 %o A379354 while not is_prime(mpz(s+digits(p))): p = next_prime(p) %o A379354 an = p %o A379354 print(list(islice(agen(), 57))) # _Michael S. Branicky_, Dec 21 2024 %Y A379354 Cf. A111382, A111383, A113584, A379355. %K A379354 base,nonn %O A379354 1,1 %A A379354 _J.W.L. (Jan) Eerland_, Dec 21 2024