This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379355 #21 Jan 03 2025 01:58:10 %S A379355 3,2,2,13,2,13,59,31,263,73,23,31,449,31,59,313,2,3,211,317,31,449, %T A379355 241,887,349,911,853,887,313,173,1777,179,967,503,331,113,163,359, %U A379355 1153,281,97,1823,13,23,1657,269,223,3623,2017,233,61,1361,367,1031,79,389,577,2963,1741,59,13,1439,463,797 %N A379355 Beginning with 3, least prime such that the reversal concatenation of first n terms is prime. %C A379355 "Reverse concatenation" here seems to refer to the decimal concatenation R(a(n)) || R(a(n-1)) || ... || R(a(3)) || R(a(2)) || R(a(1)) where R(k) means "reverse digits of k". - _N. J. A. Sloane_, Jan 03 2025 %H A379355 Michael S. Branicky, <a href="/A379355/b379355.txt">Table of n, a(n) for n = 1..1000</a> %t A379355 w = {3}; %t A379355 Do[k = 1; %t A379355 q = Monitor[ %t A379355 Parallelize[ %t A379355 While[True, %t A379355 If[PrimeQ[ %t A379355 FromDigits[ %t A379355 Join @@ IntegerDigits /@ %t A379355 Reverse[ %t A379355 IntegerDigits[ %t A379355 FromDigits[ %t A379355 Join @@ IntegerDigits /@ Append[w, Prime[k]]]]]]], Break[]]; k++]; %t A379355 Prime[k]], k]; %t A379355 w = Append[w, q], {i, 2, 57}]; %t A379355 w %o A379355 (Python) %o A379355 from itertools import count, islice %o A379355 from gmpy2 import digits, is_prime, mpz, next_prime %o A379355 def agen(): # generator of terms %o A379355 r, an = "", 3 %o A379355 while True: %o A379355 yield int(an) %o A379355 r = digits(an)[::-1] + r %o A379355 p = 2 %o A379355 while not is_prime(mpz(digits(p)[::-1]+r)): p = next_prime(p) %o A379355 an = p %o A379355 print(list(islice(agen(), 57))) # _Michael S. Branicky_, Dec 21 2024 %Y A379355 Cf. A111382, A111383, A113584, A379354. %Y A379355 The primes produced are in A379782. %K A379355 base,nonn %O A379355 1,1 %A A379355 _J.W.L. (Jan) Eerland_, Dec 21 2024