cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379357 Numerators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).

This page as a plain text file.
%I A379357 #8 Dec 22 2024 16:52:05
%S A379357 1,4,5,11,13,41,47,122,259,269,299,152,167,172,59,4,13,79,85,43,44,5,
%T A379357 16,161,83,254,517,29,92,833,878,6191,6296,6401,6506,26129,27389,
%U A379357 27809,28229,5671,5923,5951,6203,6245,6287,6371,6623,33199,33829,34039,34459,34669
%N A379357 Numerators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).
%D A379357 Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 12-13, Theorem 1.2.
%D A379357 József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 59.
%H A379357 Amiram Eldar, <a href="/A379357/b379357.txt">Table of n, a(n) for n = 1..10000</a>
%H A379357 Aleksandar Ivić, <a href="https://eudml.org/doc/259950">On the asymptotic formulae for some functions connected with powers of the zeta-function</a>, Matematički Vesnik, Vol. 1 (14) (29) (1977), pp. 79-90.
%F A379357 a(n) = numerator(Sum_{k=1..n} 1/A007425(k)).
%F A379357 a(n)/A379358(n) = Sum_{i=1..N} b_i * n / log(n)^(i-1/3) + O(n / log(n)^(N+1-1/3)), for any fixed N >= 1, where b_i are constants. The same formula holds (with different constants) for any Piltz function d_k(n), for k >= 2, when 1/3 is replaced by 1/k.
%e A379357 Fractions begin with 1, 4/3, 5/3, 11/6, 13/6, 41/18, 47/18, 122/45, 259/90, 269/90, 299/90, 152/45, ...
%t A379357 f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/d3[n], {n, 1, 100}]]]
%o A379357 (PARI) d3(n) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2]));
%o A379357 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / d3(k); print1(numerator(s), ", "))};
%Y A379357 Cf. A007425, A061201, A104528, A379358 (denominators).
%K A379357 nonn,easy,frac
%O A379357 1,2
%A A379357 _Amiram Eldar_, Dec 21 2024