cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379358 Denominators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).

This page as a plain text file.
%I A379358 #7 Dec 22 2024 16:52:18
%S A379358 1,3,3,6,6,18,18,45,90,90,90,45,45,45,15,1,3,18,18,9,9,1,3,30,15,45,
%T A379358 90,5,15,135,135,945,945,945,945,3780,3780,3780,3780,756,756,756,756,
%U A379358 756,756,756,756,3780,3780,3780,3780,3780,3780,756,756,3780,3780,3780
%N A379358 Denominators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).
%D A379358 Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 12-13, Theorem 1.2.
%D A379358 József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 59.
%H A379358 Amiram Eldar, <a href="/A379358/b379358.txt">Table of n, a(n) for n = 1..10000</a>
%H A379358 Aleksandar Ivić, <a href="https://eudml.org/doc/259950">On the asymptotic formulae for some functions connected with powers of the zeta-function</a>, Matematički Vesnik, Vol. 1 (14) (29) (1977), pp. 79-90.
%F A379358 a(n) = denominator(Sum_{k=1..n} 1/A007425(k)).
%t A379358 f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/d3[n], {n, 1, 100}]]]
%o A379358 (PARI) d3(n) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2]));
%o A379358 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / d3(k); print1(denominator(s), ", "))};
%Y A379358 Cf. A007425, A061201, A104529, A379357 (numerators).
%K A379358 nonn,easy,frac
%O A379358 1,2
%A A379358 _Amiram Eldar_, Dec 21 2024