cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379359 Numerators of the partial sums of the reciprocals of the number of abelian groups function (A000688).

This page as a plain text file.
%I A379359 #8 Dec 22 2024 16:52:28
%S A379359 1,2,3,7,9,11,13,41,22,25,28,59,65,71,77,391,421,218,233,481,511,541,
%T A379359 571,581,298,313,106,217,227,237,247,1739,1809,1879,1949,3933,4073,
%U A379359 4213,4353,13199,13619,14039,14459,14669,14879,15299,15719,15803,16013,16223,16643
%N A379359 Numerators of the partial sums of the reciprocals of the number of abelian groups function (A000688).
%D A379359 Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 13-16, Theorem 1.3.
%D A379359 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See section 5.1, Abelian group enumeration constants, p. 274.
%H A379359 Amiram Eldar, <a href="/A379359/b379359.txt">Table of n, a(n) for n = 1..10000</a>
%H A379359 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.8, pp. 27-28.
%F A379359 a(n) = numerator(Sum_{k=1..n} 1/A000688(k)).
%F A379359 a(n)/A379360(n) = D * n + O(sqrt(n/log(n))), where D = A084911.
%e A379359 Fractions begin with 1, 2, 3, 7/2, 9/2, 11/2, 13/2, 41/6, 22/3, 25/3, 28/3, 59/6, ...
%t A379359 Numerator[Accumulate[Table[1/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
%o A379359 (PARI) f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
%o A379359 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / f(k); print1(numerator(s), ", "))};
%Y A379359 Cf. A000688, A063966, A084911, A370897, A379360 (denominators), A379361.
%K A379359 nonn,easy,frac
%O A379359 1,2
%A A379359 _Amiram Eldar_, Dec 21 2024