cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379361 Numerators of the partial alternating sums of the reciprocals of the number of abelian groups function (A000688).

This page as a plain text file.
%I A379361 #7 Dec 22 2024 16:52:47
%S A379361 1,0,1,1,3,1,3,7,5,2,5,7,13,7,13,59,89,37,52,89,119,89,119,109,62,47,
%T A379361 52,89,119,89,119,803,1013,803,1013,1921,2341,1921,2341,2201,2621,
%U A379361 2201,2621,2411,2621,2201,2621,2537,2747,2537,2957,2747,3167,1009,1149,3307
%N A379361 Numerators of the partial alternating sums of the reciprocals of the number of abelian groups function (A000688).
%H A379361 Amiram Eldar, <a href="/A379361/b379361.txt">Table of n, a(n) for n = 1..10000</a>
%H A379361 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.8, pp. 27-28.
%F A379361 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A000688(k)).
%F A379361 a(n)/A379362(n) ~ D * c * n, where D = A084911, c = 2/(1 + Sum_{k>=1} 1/(P(k)*2^k)) - 1 = 0.18634377034863729099..., and P(k) = A000041(k).
%e A379361 Fractions begin with 1, 0, 1, 1/2, 3/2, 1/2, 3/2, 7/6, 5/3, 2/3, 5/3, 7/6, ...
%t A379361 Numerator[Accumulate[Table[(-1)^(n+1)/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
%o A379361 (PARI) f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
%o A379361 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / f(k); print1(numerator(s), ", "))};
%Y A379361 Cf. A000041, A000688, A063966, A084911, A370897, A379359, A379362 (denominators).
%K A379361 nonn,easy,frac
%O A379361 1,5
%A A379361 _Amiram Eldar_, Dec 21 2024