cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379363 Numerators of the partial sums of the reciprocals of Pillai's arithmetical function (A018804).

This page as a plain text file.
%I A379363 #10 Jan 08 2025 11:40:32
%S A379363 1,4,23,199,637,661,8953,9187,65869,201247,205927,26048,132697,134272,
%T A379363 135637,2190667,24424937,3513791,131554667,132348317,133227437,
%U A379363 938941259,947830139,190366027,2947643,74101331,223443593,2916305159,55809797621,55978686341,3437499844001
%N A379363 Numerators of the partial sums of the reciprocals of Pillai's arithmetical function (A018804).
%H A379363 Amiram Eldar, <a href="/A379363/b379363.txt">Table of n, a(n) for n = 1..1000</a>
%H A379363 László Tóth, <a href="http://cs.uwaterloo.ca/journals/JIS/VOL13/Toth/toth10.html">A survey of gcd-sum functions</a>, Journal of Integer Sequences, Vol. 13 (2010), Article 10.8.1. See pp. 18-19.
%H A379363 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.5, pp. 23-24.
%H A379363 Shiqin Chen and Wenguang Zhai, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Zhai/zhai4.html">Reciprocals of the Gcd-Sum Functions</a>, Journal of Integer Sequences, Vol. 14 (2011), Article 11.8.3.
%F A379363 a(n) = numerator(Sum_{k=1..n} 1/A018804(k)).
%F A379363 a(n)/A379364(n) = Sum_{j=0..N} K_j/log(n)^(j-1/2) + O(1/log(n)^(N+1/2)), for any integer N >= 1, where K_j are constants, and in particular K_0 = (2/sqrt(Pi)) * Product_{p prime} (sqrt(1-1/p) * Sum_{k>=1} 1/A018804(p^k)) = 1.30088863073811791549... .
%e A379363 Fractions begin with 1, 4/3, 23/15, 199/120, 637/360, 661/360, 8953/4680, 9187/4680, 65869/32760, 201247/98280, 205927/98280, 26048/12285, ...
%t A379363 f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/pillai[n], {n, 1, 50}]]]
%o A379363 (PARI) pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i,2]*(f[i,1]-1)/f[i,1] + 1)*f[i,1]^f[i,2]);}
%o A379363 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / pillai(k); print1(numerator(s), ", "))};
%Y A379363 Cf. A018804, A272718, A370895, A379364 (denominators), A379365.
%K A379363 nonn,easy,frac
%O A379363 1,2
%A A379363 _Amiram Eldar_, Dec 21 2024