cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379364 Denominators of the partial sums of the reciprocals of Pillai's arithmetical function (A018804).

This page as a plain text file.
%I A379364 #8 Jan 08 2025 11:40:42
%S A379364 1,3,15,120,360,360,4680,4680,32760,98280,98280,12285,61425,61425,
%T A379364 61425,982800,10810800,1544400,57142800,57142800,57142800,399999600,
%U A379364 399999600,79999920,1230768,30769200,92307600,1199998800,22799977200,22799977200,1390798609200,695399304600
%N A379364 Denominators of the partial sums of the reciprocals of Pillai's arithmetical function (A018804).
%H A379364 Amiram Eldar, <a href="/A379364/b379364.txt">Table of n, a(n) for n = 1..1000</a>
%H A379364 László Tóth, <a href="http://cs.uwaterloo.ca/journals/JIS/VOL13/Toth/toth10.html">A survey of gcd-sum functions</a>, Journal of Integer Sequences, Vol. 13 (2010), Article 10.8.1. See pp. 18-19.
%H A379364 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.5, pp. 23-24.
%H A379364 Shiqin Chen and Wenguang Zhai, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Zhai/zhai4.html">Reciprocals of the Gcd-Sum Functions</a>, Journal of Integer Sequences, Vol. 14 (2011), Article 11.8.3.
%F A379364 a(n) = denominator(Sum_{k=1..n} 1/A018804(k)).
%t A379364 f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/pillai[n], {n, 1, 50}]]]
%o A379364 (PARI) pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i,2]*(f[i,1]-1)/f[i,1] + 1)*f[i,1]^f[i,2]);}
%o A379364 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / pillai(k); print1(denominator(s), ", "))};
%Y A379364 Cf. A018804, A272718, A370895, A379363 (numerators), A379366.
%K A379364 nonn,easy,frac
%O A379364 1,2
%A A379364 _Amiram Eldar_, Dec 21 2024