cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379365 Numerators of the partial alternating sums of the reciprocals of Pillai's arithmetical function (A018804).

This page as a plain text file.
%I A379365 #8 Dec 22 2024 16:53:39
%S A379365 1,2,13,89,307,283,4039,761,5639,16189,17125,10396,54437,52862,54227,
%T A379365 847157,9646327,9474727,361375699,355820149,27844153,27355753,
%U A379365 28039513,27731821,366667513,72266837,219763471,217455781,4211659759,835576403,51882159671,25692722941
%N A379365 Numerators of the partial alternating sums of the reciprocals of Pillai's arithmetical function (A018804).
%H A379365 Amiram Eldar, <a href="/A379365/b379365.txt">Table of n, a(n) for n = 1..1000</a>
%H A379365 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.5, pp. 23-24.
%F A379365 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A018804(k)).
%F A379365 a(n)/A379366(n) = Sum_{j=0..N} D_j/log(n)^(j-1/2) + O(1/log(n)^(N+1/2), for any integer N >= 1, where D_j are constants, and in particular D_0 = (1/(4*log(2)-2)-1) * (2/sqrt(Pi)) * Product_{p prime} (sqrt(1-1/p) * Sum_{k>=1} 1/A018804(p^k)) = 0.38291621042855537524... .
%e A379365 Fractions begin with 1, 2/3, 13/15, 89/120, 307/360, 283/360, 4039/4680, 761/936, 5639/6552, 16189/19656, 17125/19656, 10396/12285, ...
%t A379365 f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/pillai[n], {n, 1, 50}]]]
%o A379365 (PARI) pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i,2]*(f[i,1]-1)/f[i,1] + 1)*f[i,1]^f[i,2]);}
%o A379365 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / pillai(k); print1(numerator(s), ", "))};
%Y A379365 Cf. A018804, A272718, A370895, A379363, A379366 (denominators).
%K A379365 nonn,easy,frac
%O A379365 1,2
%A A379365 _Amiram Eldar_, Dec 21 2024