cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379366 Denominators of the partial alternating sums of the reciprocals of Pillai's arithmetical function (A018804).

This page as a plain text file.
%I A379366 #6 Dec 22 2024 16:53:48
%S A379366 1,3,15,120,360,360,4680,936,6552,19656,19656,12285,61425,61425,61425,
%T A379366 982800,10810800,10810800,399999600,399999600,30769200,30769200,
%U A379366 30769200,30769200,399999600,79999920,239999760,239999760,4559995440,911999088,55631944368,27815972184
%N A379366 Denominators of the partial alternating sums of the reciprocals of Pillai's arithmetical function (A018804).
%H A379366 Amiram Eldar, <a href="/A379366/b379366.txt">Table of n, a(n) for n = 1..1000</a>
%H A379366 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.5, pp. 23-24.
%F A379366 a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A018804(k)).
%t A379366 f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/pillai[n], {n, 1, 50}]]]
%o A379366 (PARI) pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i,2]*(f[i,1]-1)/f[i,1] + 1)*f[i,1]^f[i,2]);}
%o A379366 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / pillai(k); print1(denominator(s), ", "))};
%Y A379366 Cf. A018804, A272718, A370895, A379364, A379365 (numerators).
%K A379366 nonn,easy,frac
%O A379366 1,2
%A A379366 _Amiram Eldar_, Dec 21 2024