cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379367 Numerators of the partial sums of the reciprocals of the squarefree kernel function (A007947).

This page as a plain text file.
%I A379367 #6 Dec 22 2024 16:53:55
%S A379367 1,3,11,7,38,27,199,117,386,793,8933,1553,20574,41863,127591,71303,
%T A379367 1227166,2539417,48759433,24864701,25095646,50632187,1174239991,
%U A379367 605711068,125604071,252924241,267797099,19356010,564511331,1891973791,58959268151,31867258958,8730535499
%N A379367 Numerators of the partial sums of the reciprocals of the squarefree kernel function (A007947).
%D A379367 Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 16-17.
%H A379367 Amiram Eldar, <a href="/A379367/b379367.txt">Table of n, a(n) for n = 1..1000</a>
%H A379367 N. G. de Bruijn, <a href="https://doi.org/10.1215/ijm/1255631814">On the number of integers <= x whose prime factors divide n</a>, Illinois Journal of Mathematics, Vol. 6, No. 1 (1962), pp. 137-141.
%H A379367 Olivier Robert and Gérald Tenenbaum, <a href="https://doi.org/10.1016/j.indag.2013.07.007">Sur la répartition du noyau d'un entier</a>, Indagationes Mathematicae, Vol. 24, No. 4 (2013), pp. 802-914.
%H A379367 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.6, pp. 24-26.
%F A379367 a(n) = numerator(Sum_{k=1..n} 1/A007947(k)).
%F A379367 a(n)/A379368(n) = exp((1 + o(1)) * sqrt(8*log(n)/log(log(n)))).
%F A379367 a(n)/A379368(n) ~ (1/2) * exp(gamma) * F(log(n)) * log(log(n)), where F(t) = (6/Pi^2) * Sum_{m>=1} min(1,exp(t)/m)/Product_{primes p|m} (p+1).
%e A379367 Fractions begin with 1, 3/2, 11/6, 7/3, 38/15, 27/10, 199/70, 117/35, 386/105, 793/210, 8933/2310, 1553/385, ...
%t A379367 rad[n_] := Times @@ FactorInteger[n][[;;, 1]]; Numerator[Accumulate[Table[1/rad[n], {n, 1, 50}]]]
%o A379367 (PARI) rad(n) = vecprod(factor(n)[, 1]);
%o A379367 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / rad(k); print1(numerator(s), ", "))};
%Y A379367 Cf. A007947, A073355, A370896, A379368 (denominators), A379369.
%Y A379367 Cf. A059956, A073004.
%K A379367 nonn,easy,frac
%O A379367 1,2
%A A379367 _Amiram Eldar_, Dec 21 2024