This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379385 #8 Dec 24 2024 08:42:44 %S A379385 9,2,2,3,1,9,1,2,9,0,6,4,0,4,6,4,0,7,1,0,4,0,6,1,6,9,3,1,9,0,9,8,3,8, %T A379385 4,4,0,7,2,0,7,0,5,2,5,4,5,1,8,4,1,2,3,2,0,8,3,1,7,4,5,7,0,5,9,8,0,0, %U A379385 6,1,7,7,3,7,2,3,1,8,3,8,0,9,6,2,4,3,3,7,0,8 %N A379385 Decimal expansion of the surface area of a deltoidal hexecontahedron with unit shorter edge length. %C A379385 The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron. %H A379385 Paolo Xausa, <a href="/A379385/b379385.txt">Table of n, a(n) for n = 2..10000</a> %H A379385 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DeltoidalHexecontahedron.html">Deltoidal Hexecontahedron</a>. %H A379385 Wikipedia, <a href="https://en.wikipedia.org/wiki/Deltoidal_hexecontahedron">Deltoidal hexecontahedron</a>. %F A379385 Equals sqrt(4370 + 1850*sqrt(5)) = sqrt(4370 + 1850*A002163). %e A379385 92.231912906404640710406169319098384407207052545184... %t A379385 First[RealDigits[Sqrt[4370 + 1850*Sqrt[5]], 10, 100]] (* or *) %t A379385 First[RealDigits[PolyhedronData["DeltoidalHexecontahedron", "SurfaceArea"], 10, 100]] %Y A379385 Cf. A379386 (volume), A379387 (inradius), A379388 (midradius), A379389 (dihedral angle). %Y A379385 Cf. A344149 (surface area of a (small) rhombicosidodecahedron with unit edge length). %Y A379385 Cf. A002163. %K A379385 nonn,cons,easy %O A379385 2,1 %A A379385 _Paolo Xausa_, Dec 22 2024