This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379386 #8 Dec 24 2024 08:43:01 %S A379386 8,1,0,0,4,1,4,3,6,3,5,3,7,7,0,8,9,0,9,9,4,5,6,6,6,5,3,4,1,6,1,6,2,8, %T A379386 2,2,4,6,8,0,4,3,9,3,4,5,6,8,0,3,4,5,0,0,6,2,5,4,2,8,6,0,3,6,7,4,5,7, %U A379386 7,4,5,7,5,9,4,9,7,9,0,1,9,0,9,9,9,5,1,5,6,8 %N A379386 Decimal expansion of the volume of a deltoidal hexecontahedron with unit shorter edge length. %C A379386 The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron. %H A379386 Paolo Xausa, <a href="/A379386/b379386.txt">Table of n, a(n) for n = 2..10000</a> %H A379386 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DeltoidalHexecontahedron.html">Deltoidal Hexecontahedron</a>. %H A379386 Wikipedia, <a href="https://en.wikipedia.org/wiki/Deltoidal_hexecontahedron">Deltoidal hexecontahedron</a>. %F A379386 Equals sqrt((29530 + 13204*sqrt(5))/9) = sqrt((29530 + 13204*A002163)/9). %e A379386 81.004143635377089099456665341616282246804393456803... %t A379386 First[RealDigits[Sqrt[(29530 + 13204*Sqrt[5])/9], 10, 100]] (* or *) %t A379386 First[RealDigits[PolyhedronData["DeltoidalHexecontahedron","Volume"], 10, 100]] %Y A379386 Cf. A379385 (surface area), A379387 (inradius), A379388 (midradius), A379389 (dihedral angle). %Y A379386 Cf. A185093 (volume of a (small) rhombicosidodecahedron with unit edge length). %Y A379386 Cf. A002163. %K A379386 nonn,cons,easy %O A379386 2,1 %A A379386 _Paolo Xausa_, Dec 23 2024