A379388 Decimal expansion of the midradius of a deltoidal hexecontahedron with unit shorter edge length.
2, 7, 0, 3, 4, 4, 4, 1, 8, 5, 3, 7, 4, 8, 6, 3, 3, 0, 2, 6, 6, 5, 9, 6, 2, 8, 8, 4, 6, 7, 5, 3, 2, 9, 5, 5, 3, 0, 3, 6, 4, 0, 1, 9, 3, 3, 7, 4, 7, 4, 9, 1, 7, 2, 0, 7, 7, 6, 0, 8, 3, 2, 0, 9, 5, 1, 6, 8, 3, 8, 6, 0, 1, 6, 6, 4, 5, 7, 3, 1, 8, 4, 6, 1, 9, 3, 6, 9, 3, 6
Offset: 1
Examples
2.70344418537486330266596288467532955303640193...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Deltoidal Hexecontahedron.
- Wikipedia, Deltoidal hexecontahedron.
- Index entries for algebraic numbers, degree 2.
Crossrefs
Programs
-
Mathematica
First[RealDigits[5/4 + 13/Sqrt[80], 10, 100]] (* or *) First[RealDigits[PolyhedronData["DeltoidalHexecontahedron", "Midradius"], 10, 100]]
-
PARI
5/4 + 13/(4*sqrt(5)) \\ Charles R Greathouse IV, Feb 05 2025
Formula
Equals 5/4 + 13/(4*sqrt(5)) = 5/4 + 13/A010532.
Comments