cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379389 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a deltoidal hexecontahedron.

This page as a plain text file.
%I A379389 #6 Dec 24 2024 08:43:57
%S A379389 2,6,8,9,9,2,5,2,3,4,2,0,6,5,7,6,3,4,0,0,7,2,8,8,1,5,1,4,6,3,1,6,1,6,
%T A379389 8,3,0,0,3,5,3,3,0,3,7,2,4,9,2,1,1,4,1,4,3,1,6,0,1,1,4,5,0,7,8,1,7,2,
%U A379389 8,3,1,9,1,3,5,1,4,1,4,4,0,1,8,9,8,9,6,6,3,8
%N A379389 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a deltoidal hexecontahedron.
%C A379389 The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.
%H A379389 Paolo Xausa, <a href="/A379389/b379389.txt">Table of n, a(n) for n = 1..10000</a>
%H A379389 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DeltoidalHexecontahedron.html">Deltoidal Hexecontahedron</a>.
%H A379389 Wikipedia, <a href="https://en.wikipedia.org/wiki/Deltoidal_hexecontahedron">Deltoidal hexecontahedron</a>.
%F A379389 Equals arccos(-(19 + 8*sqrt(5))/41) = arccos(-(19 + 8*A002163)/41).
%e A379389 2.6899252342065763400728815146316168300353303724921...
%t A379389 First[RealDigits[ArcCos[-(19 + 8*Sqrt[5])/41], 10, 100]] (* or *)
%t A379389 First[RealDigits[First[PolyhedronData["DeltoidalHexecontahedron", "DihedralAngles"]], 10, 100]]
%Y A379389 Cf. A379385 (surface area), A379386 (volume), A379387 (inradius), A379388 (midradius).
%Y A379389 Cf. A377995 and A377996 (dihedral angles of a (small) rhombicosidodecahedron).
%Y A379389 Cf. A002163.
%K A379389 nonn,cons,easy
%O A379389 1,1
%A A379389 _Paolo Xausa_, Dec 23 2024