This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379393 #13 Dec 23 2024 01:58:15 %S A379393 1,6,72,277,1910,8657,27442,97132,295752,967914,2922814 %N A379393 Maximum number of connections for a 3 X n rectangle. %C A379393 In a 3 X n board (with n > 1) with numbers 1, 2 and 3, at least 2 of each, find the arrangement with more solutions connecting a pair of numbers 1 and a pair of number 2 and a pair of number 3, covering the entire board and without passing through the same square twice. %C A379393 Terms a(5) and a(7)-a(12) from Giorgio Vecchi. %H A379393 Rodolfo Kurchan and Claudio Meller, <a href="https://www.puzzlefun.online/problems">Number Connections</a>, Puzzle Fun, Problems (2024). %e A379393 For n = 2 with the board %e A379393 +---+---+ %e A379393 | 1 | 1 | %e A379393 +---+---+ %e A379393 | 2 | 2 | %e A379393 +---+---+ %e A379393 | 3 | 3 | %e A379393 +---+---+ %e A379393 There is only 1 solution being the squares with these letters: %e A379393 +---+---+ %e A379393 | A | B | %e A379393 +---+---+ %e A379393 | C | D | %e A379393 +---+---+ %e A379393 | E | F | %e A379393 +---+---+ %e A379393 Solution: %e A379393 1) AB - CD - EF %e A379393 There is one solution so a(2) = 1. %e A379393 . %e A379393 For n = 3 with the board %e A379393 +---+---+---+ %e A379393 | 1 | 3 | 3 | %e A379393 +---+---+---+ %e A379393 | 1 | 2 | 2 | %e A379393 +---+---+---+ %e A379393 | 1 | 2 | 2 | %e A379393 +---+---+---+ %e A379393 the maximum number of solutions is 6 being the squares with this letters: %e A379393 +---+---+---+ %e A379393 | A | B | C | %e A379393 +---+---+---+ %e A379393 | D | E | F | %e A379393 +---+---+---+ %e A379393 | G | H | I | %e A379393 +---+---+---+ %e A379393 Solutions: %e A379393 1) ADG - BC - HEFI %e A379393 2) ADG - BC - FEHI %e A379393 3) ADG - BC - EFIH %e A379393 4) ADG - BC - EHIF %e A379393 5) ADG - BEFC - HI %e A379393 6) ADEHG - BC - FI %e A379393 There are six solutions so a(3) = 6. %Y A379393 Cf. A379241. %K A379393 nonn,more %O A379393 2,2 %A A379393 _Rodolfo Kurchan_, Dec 22 2024